scholarly journals Testing novel multicomposite materials for electromethanogenesis

2022 ◽  
Vol 334 ◽  
pp. 08012
Author(s):  
Giorgia Ghiara ◽  
Stefano Trasatti ◽  
Andrea Goglio ◽  
Pierangela Cristiani

Electromethanogenesis is an innovative technology that uses a microbial electrochemical system to produce methane from CO2, in a power-to-gas (BEP2G) concept. The results of experimental tests of new and cost-effective carbonaceous materials for electrode are presented here. The study aims at optimizing electromethanogenesis processes at laboratory level in mesothermic condition. As part of the experiments, hydrogenotrophic microorganisms (Family Metanobacteriaceae of Archaea domains) were selected from a mixed consortium taken from a biogas digestate and inoculated in double-chamber bioelectrochemical systems. The maximum amount of methane produced was 0.3 - 0.8 mol/m2g (normalized to the cathode area) with carbon cloth electrodes. Aiming at improving the methane productivity, innovative materials for the electrodes were now studied, creating porous high-surface composites, and studying nitrogen carbons doped with Cu and hydroxyapatite (Multicomposite Cu@/HAP/C), as chemical catalysts for CO2 reduction (CO2RR). The description of the procedure for the Multicomposite Cu@/HAP/C production is reported in detail.

Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1893
Author(s):  
Sónia O. Pereira ◽  
Nuno F. Santos ◽  
Alexandre F. Carvalho ◽  
António J. S. Fernandes ◽  
Florinda M. Costa

Carbon-based electrodes have demonstrated great promise as electrochemical transducers in the development of biosensors. More recently, laser-induced graphene (LIG), a graphene derivative, appears as a great candidate due to its superior electron transfer characteristics, high surface area and simplicity in its synthesis. The continuous interest in the development of cost-effective, more stable and reliable biosensors for glucose detection make them the most studied and explored within the academic and industry community. In this work, the electrochemistry of glucose oxidase (GOx) adsorbed on LIG electrodes is studied in detail. In addition to the well-known electroactivity of free flavin adenine dinucleotide (FAD), the cofactor of GOx, at the expected half-wave potential of −0.490 V vs. Ag/AgCl (1 M KCl), a new well-defined redox pair at 0.155 V is observed and shown to be related to LIG/GOx interaction. A systematic study was undertaken in order to understand the origin of this activity, including scan rate and pH dependence, along with glucose detection tests. Two protons and two electrons are involved in this reaction, which is shown to be sensitive to the concentration of glucose, restraining its origin to the electron transfer from FAD in the active site of GOx to the electrode via direct or mediated by quinone derivatives acting as mediators.


2021 ◽  
pp. 095605992110222
Author(s):  
Chrysl A Aranha ◽  
Markus Hudert ◽  
Gerhard Fink

Interlocking Particle Structures (IPS) are geometrically stable assemblies, usually fabricated from plate type elements that are interconnected by slotted joints. IPS are demountable and their components have the potential to be used and reused in different structures and configurations. This paper explores the applicability of birch plywood panels, which are characterized by a high surface hardness, for this type of structural system. Experimental tests were conducted to determine the mechanical properties of birch plywood plates. Moreover, IPS connections with different geometrical properties were investigated for two different load exposures: bending and rotation. The characteristics under bending exposure are influenced by the orientation of the face-veneers. For the rotational load exposure, very small strength and stiffness properties have been identified. A linear elastic finite element model is presented that shows a wide agreement with the test results. The study serves as an initial probe into the performance of IPS structures at the component level. Various aspects that are relevant for the design of IPS, such as the assembly, the accuracy and challenges regarding digital fabrication, the durability, and the structural performance are discussed.


Author(s):  
Meghashree ◽  
Alwyn Edison Mendonca ◽  
Ashika S Shetty

Plant disease is an on-going challenge for the farmers and it has been one of the major threats to the income and the food security. This project is used to classify plant leaf into diseased and healthy leaf,to improve the quality and quantity of agricultural production in the country. The innovative technology that helps in improve the quality and quantity in the agricultural field is the smart farming system. It represented the modern method that provides cost-effective disease detection and deep learning with convolutional neural networks (CNNs) has achieved large successfulness in the categorisation of different plant leaf diseases. CNN reads a really very larger picture in a simple way. CNN nearly utilised to examine visual imagery and are frequently working behind the scenes in image classification. To extract the general features and then classify them under multiple based upon the features detected. This project will help the farmers financially in increasing the production of the crop yield as well as the overall agricultural production. The paper reviews the expected methods of plant leaf disease detection system that facilitates the advancement in agriculture. It includes various phases such as image preprocessing, image classification, feature extraction and detecting healthy or diseased.


2016 ◽  
Vol 715 ◽  
pp. 174-179 ◽  
Author(s):  
Chih Hsing Liu ◽  
Ying Chia Huang ◽  
Chen Hua Chiu ◽  
Yu Cheng Lai ◽  
Tzu Yang Pai

This paper presents the analysis methods for design of automotive bumper covers. The bumper covers are plastic structures attached to the front and rear ends of an automobile and are expected to absorb energy in a minor collision. One requirement in design of the bumper covers is to minimize the bumper deflection within a limited range under specific loadings at specific locations based on the design guideline. To investigate the stiffness performance under various loading conditions, a numerical model based on the explicit dynamic finite element analysis (FEA) using the commercial FEA solver, LS-DYNA, is developed to analyze the design. The experimental tests are also carried out to verify the numerical model. The thickness of the bumper cover is a design variable which usually varies from 3 to 4 mm depending on locations. To improve the stiffness of the bumper, an optimal design for the bumper under a pre-defined loading condition is identified by using the topology optimization approach, which is an optimal design method to obtain the optimal layout of an initial design domain under specific boundary conditions. The outcome of this study provides an efficient and cost-effective method to predict and improve the design of automotive bumper covers.


2015 ◽  
Vol 12 (3) ◽  
pp. 111-117
Author(s):  
Woon-Seong Kwon ◽  
Suresh Ramalingam ◽  
Xin Wu ◽  
Liam Madden ◽  
C. Y. Huang ◽  
...  

This article introduces the first comprehensive demonstration of new innovative technology comprising multiple key technologies for highly cost-effective and high-performance Xilinx field programmable gate array (FPGA), which is so-called stack silicon-less interconnect technology (SLIT) that provides the equivalent high-bandwidth connectivity and routing design-rule as stack silicon interconnect (SSI) technology at a cost-effective manner. We have successfully demonstrated the overall process integration and functions of our new SLIT-employed package using Virtex®-7 2000T FPGA product with chip-to-wafer stacking, wafer-level flux cleaning, microbump underfilling, mold encapsulation, and backside silicon removal. Of all technology elements, both full silicon removal process with faster etching and no dielectric layer damage and wafer warpage management after full silicon etching are most crucial elements to realize the SLIT technology. To manage the wafer warpage after full Si removal, a couple of knobs are identified and used such as top reinforcement layer, microbump underfill properties tuning, die thickness, die-to-die space, and total thickness adjustments. It is also discussed in the article how the wafer warpage behaves and how the wafer warpage is managed. New SLIT module shows excellent warpage characteristics of only −30 μm ∼ −40 μm at room temperature (25°C) for 25 mm × 31 mm in size and +20 μm ∼ +25 μm at reflow temperature (250°C). Thermal simulation results shows that thermal resistance of new SLIT package is almost comparable to that of standard 2000T flip-chip ball grid array (FC-BGA) package using through silicon via interposer with standard heat sink configuration and air wind condition. The reliability assessment is now under the study.


2018 ◽  
Vol 941 ◽  
pp. 1996-2005
Author(s):  
Ehsan Sherkatghanad ◽  
Li Hui Lang ◽  
Shi Chen Liu

Advanced materials such as aluminum alloys and composites offer great potential for weight reduction applications in automotive and aerospace vehicles construction. In order to investigate the feasibility of using such materials in the form of laminates, sheet bulging with single-layer aluminum and the aluminum/Composite laminate with the carbon cloth as the middle layer is investigated under uniform liquid pressure conditions. The aluminum sheet stress-strain, wall thickness distribution, carbon fiber radius stress-strain distribution and the effect of die entrance radius etc. are discussed and compared in details. FE results validate that the numerical method can predict the same fracture regions for bulging-blank as observed in experimental tests. Furthermore, the study validates that multi-layer sheet hydro-bulging process with composite fiber as a middle layer is not feasible to form laminates due to rupture of composite fibers near edge regions. Further study is needed to improve the methodology.


Author(s):  
Gamal Refai-Ahmed

The past few decades have seen a number of countries around the world emerge as a growing market for high performance computers. This present study examines, in more detail, how socio-economic influences are shaping the demand function and how some computing landscapes are changing as a consequence. This study is addressing one of the key initiatives to enable 50 percent of the world’s population with access to the World Wide Web. Furthermore, this investigation is addressing the challenges for electronics packaging Engineers and Researchers. Therefore, the rational of the developed technology based on the understanding target market and usages will be given. The impact of addressing the heat dissipation and managing the use of the raw materials of the intended products are discussed. In addition, how the electronics packaging engineers can focus on developing affordable innovative technology. Finally, the impact of all of the above is examined in developing the cost effective solution from a global point of view.


Author(s):  
Hisham Kamel ◽  
Omar Harraz ◽  
Tamer Attia

Abstract This paper presents the results of an investigative study on the development of an affordable and functional prosthetic foot for below knee amputees. A prototype was successfully manufactured using 3D printing technology. This continuously evolving technology enables the rapid production of prosthetics that are individually customized for each patient. Our prototype was developed after conducting a topology optimization study that interestingly converged to the shape of the biological human foot. Afterwards, a design was envisioned where a simple energy storage and release mechanism was implemented to replace the Achilles tendon, which minimizes the metabolic energy cost of walking. Our mechanism can successfully manage 70% of the energy compared to a normal person during each walking step. A finite element (FE) model of the prosthetic was developed and validated using experimental tests. Then, this FE model was used to confirm the safe operation of the prosthetic through simulating different loading scenarios according to the ISO standard. Our study clearly showed that customizable prosthetics could be produced at a fraction 1/60 of the cost of the commercially sold ones.


Sign in / Sign up

Export Citation Format

Share Document