airway hypersensitivity
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Blanca E. Callejas ◽  
Graham A. D. Blyth ◽  
Nicholas Jendzjowsky ◽  
Arthur Wang ◽  
Anshu Babbar ◽  
...  

The murine interleukin-4 treated macrophage (MIL4) exerts anti-inflammatory and pro-healing effects and has been shown to reduce the severity of chemical-induced colitis. Positing M(IL4) transfer as an anti-inflammatory therapy, the possibility of side-effects must be considered. Consequently, bone marrow-derived M(IL4)s were administered via intraperitoneal injection to mice concomitant with Citrobacter rodentium infection (infections colitis), azoxymethane/dextran sodium sulphate (AOM/DSS) treatment [a model of colorectal cancer (CRC)], or ovalbumin sensitization (airway inflammation). The impact of M(IL4) treatment on C. rodentium infectivity, colon histopathology, tumor number and size and tissue-specific inflammation was examined in these models. The anti-colitic effect of the M(IL4)s were confirmed in the di-nitrobenzene sulphonic acid model of colitis and the lumen-to-blood movement of 4kDa FITC-dextran and bacterial translocation to the spleen and liver was also improved by M(IL4) treatment. Analysis of the other models of disease, that represent comorbidities that can occur in human inflammatory bowel disease (IBD), revealed that M(IL4) treatment did not exaggerate the severity of any of the conditions. Rather, there was reduction in the size (but not number) of polyps in the colon of AOM/DSS-mice and reduced infectivity and inflammation in C. rodentium-infected mice in M(IL4)-treated mice. Thus, while any new therapy can have unforeseen side effects, our data confirm and extend the anti-colitic capacity of murine M(IL4)s and indicate that systemic delivery of one million M(IL4)s did not exaggerate disease in models of colonic or airways inflammation or colonic tumorigenesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tzu-Sheng Hsu ◽  
Yen-Lin Lin ◽  
Yu-An Wang ◽  
Shu-Ting Mo ◽  
Po-Yu Chi ◽  
...  

Abstract Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α are master transcription factors that regulate cellular responses to hypoxia, but the exact function in regulatory T (Treg) cells is controversial. Here, we show that Treg cell development is normal in mice with Foxp3-specific knockout (KO) of HIF-1α or HIF-2α. However, HIF-2α-KO (but not HIF-1α-KO) Treg cells are functionally defective in suppressing effector T cell-induced colitis and inhibiting airway hypersensitivity. HIF-2α-KO Treg cells have enhanced reprogramming into IL-17-secreting cells. We show crosstalk between HIF-2α and HIF-1α, and that HIF-2α represses HIF-1α expression. HIF-1α is upregulated in HIF-2α-KO Treg cells and further deletion of HIF-1α restores the inhibitory function of HIF-2α-KO Treg cells. Mice with Foxp3-conditional KO of HIF-2α are resistant to growth of MC38 colon adenocarcinoma and metastases of B16F10 melanoma. Together, these results indicate that targeting HIF-2α to destabilize Treg cells might be an approach for regulating the functional activity of Treg cells.


2020 ◽  
Vol 6 (4) ◽  
pp. 00159-2020
Author(s):  
Samantha K. Atkinson ◽  
Alyn H. Morice ◽  
Laura R. Sadofsky

Human rhinovirus (RV) is the most common cause of upper respiratory tract infection (URTI) and chronic airway disease exacerbation. Cough is present in 50–80% of URTI cases, accompanied by heightened airway hypersensitivity, yet no effective treatment currently exists for this infectious cough. The mechanism by which RV causes cough and airway hypersensitivity in URTI is still unknown despite recent advances in potential therapies for chronic cough.The effect of RV-16 infection (MOI 1) on intracellular ATP stores and ATP release in A549 alveolar epithelial cells was measured.RV-16 infection was found to significantly increase (by 50% from basal at 24 h) followed by decrease (by 50% from basal at 48 and 72 h) intracellular ATP concentrations, while increasing ATP release (from 72 h) independently of secondary stimulation. This effect was mimicked by intercellular adhesion molecule 1 receptor binding alone through ultraviolet-inactivated sham control. In addition, RV-16-infected cells became more sensitive to secondary stimulation with both hypotonic and isotonic solutions, suggestive of a hypersensitive response. These responses were not mediated via increased TRPV4 or pannexin-1 whole-cell expression as determined by Western blotting. Interestingly, the increased ATP release seen was not a result of increased mitochondrial ATP production.Thus, this is the first report demonstrating that RV-16 infection of airway epithelial cells causes hypersensitivity by increasing ATP release. These finding provide a novel insight into the process by which viruses may cause cough and identify a potential target for treatment of viral and post-viral cough.


2020 ◽  
Vol 21 (18) ◽  
pp. 6845
Author(s):  
You Shuei Lin ◽  
I-Hsuan Huang ◽  
Sheng-Hsuan Lan ◽  
Chia-Ling Chen ◽  
Yueh-Yin Chen ◽  
...  

Airway exposure to 1,3-β-D-glucan (β-glucan), an essential component of the cell wall of several pathogenic fungi, causes various adverse responses, such as pulmonary inflammation and airway hypersensitivity. The former response has been intensively investigated; however, the mechanism underlying β-glucan-induced airway hypersensitivity is unknown. Capsaicin-sensitive lung vagal (CSLV) afferents are very chemosensitive and stimulated by various insults to the lungs. Activation of CSLV afferents triggers several airway reflexes, such as cough. Furthermore, the sensitization of these afferents is known to contribute to the airway hypersensitivity during pulmonary inflammation. This study was carried out to determine whether β-glucan induces airway hypersensitivity and the role of the CSLV neurons in this hypersensitivity. Our results showed that the intratracheal instillation of β-glucan caused not only a distinctly irregular pattern in baseline breathing, but also induced a marked enhancement in the pulmonary chemoreflex responses to capsaicin in anesthetized, spontaneously breathing rats. The potentiating effect of β-glucan was found 45 min later and persisted at 90 min. However, β-glucan no longer caused the irregular baseline breathing and the potentiating of pulmonary chemoreflex responses after treatment with perineural capsaicin treatment that blocked the conduction of CSLV fibers. Besides, the potentiating effect of β-glucan on pulmonary chemoreflex responses was significantly attenuated by N-acetyl-L-cysteine (a ROS scavenger), HC-030031 (a TRPA1 antagonist), and Laminarin (a Dectin-1 antagonist). A combination of Laminarin and HC-030031 further reduced the β-glucan-induced effect. Indeed, our fiber activity results showed that the baseline fiber activity and the sensitivity of CSLV afferents were markedly elevated by β-glucan instillation, with a similar timeframe in anesthetized, artificially ventilated rats. Moreover, this effect was reduced by treatment with HC-030031. In isolated rat CSLV neurons, the β-glucan perfusion caused a similar pattern of potentiating effects on capsaicin-induced Ca2+ transients, and β-glucan-induced sensitization was abolished by Laminarin pretreatment. Furthermore, the immunofluorescence results showed that there was a co-localization of TRPV1 and Dectin-1 expression in the DiI-labeled lung vagal neurons. These results suggest that CSLV afferents play a vital role in the airway hypersensitivity elicited by airway exposure to β-glucan. The TRPA1 and Dectin-1 receptors appear to be primarily responsible for generating β-glucan-induced airway hypersensitivity.


2020 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Chi-Li Chung ◽  
You Shuei Lin ◽  
Nai-Ju Chan ◽  
Yueh-Yin Chen ◽  
Chun-Chun Hsu

The activation of capsaicin-sensitive lung vagal (CSLV) afferents can elicit airway reflexes. Hypersensitivity of these afferents is known to contribute to the airway hypersensitivity during airway inflammation. Hydrogen sulfide (H2S) has been suggested as a potential therapeutic agent for airway hypersensitivity diseases, such as asthma, because of its relaxing effect on airway smooth muscle and anti-inflammatory effect. However, it is still unknown whether H2S affects airway reflexes. Our previous study demonstrated that exogenous application of H2S sensitized CSLV afferents and enhanced Ca2+ transients in CSLV neurons. The present study aimed to determine whether the H2S-induced sensitization leads to functional changes in airway reflexes and elevates the electrical excitability of the CSLV neurons. Our results showed that, first and foremost, in anesthetized, spontaneously breathing rats, the inhalation of aerosolized sodium hydrosulfide (NaHS, a donor of H2S; 5 mg/mL, 3 min) caused an enhancement in apneic response evoked by several stimulants of the CSLV afferents. This enhancement effect was found 5 min after NaHS inhalation and returned to control 30 min later. However, NaHS no longer enhanced the apneic response after perineural capsaicin treatment on both cervical vagi that blocked the conduction of CSLV fibers. Furthermore, the enhancing effect of NaHS on apneic response was totally abolished by pretreatment with intravenous HC-030031 (a TRPA1 antagonist; 8 mg/kg), whereas the potentiating effect was not affected by the pretreatment with the vehicle of HC-030031. We also found that intracerebroventricular infusion pretreated with HC-030031 failed to alter the potentiating effect of NaHS on the apneic response. Besides, the cough reflex elicited by capsaicin aerosol was enhanced by inhalation of NaHS in conscious guinea pigs. Nevertheless, this effect was entirely eliminated by pretreatment with HC-030031, not by its vehicle. Last but not least, voltage-clamp electrophysiological analysis of isolated rat CSLV neurons showed a similar pattern of potentiating effects of NaHS on capsaicin-induced inward current, and the involvement of TRPA1 receptors was also distinctly shown. In conclusion, these results suggest that H2S non-specifically enhances the airway reflex responses, at least in part, through action on the TRPA1 receptors expressed on the CSLV afferents. Therefore, H2S should be used with caution when applying for therapeutic purposes in airway hypersensitivity diseases.


Author(s):  
O. S. Vasilyeva ◽  
N. U. Kravchenko ◽  
O. D. Nikulin

Asthma and COPD due to occupational agents may mimic each other, making it difficult to diagnostics. The mixed asthma - COPD phenotype is possible too. The evaluation of reversibility of obstruction syndrome and measure of airway hypersensitivity are necessary. The indirect challenge tests (step-test, cold air) tend to be more simple in diagnosis of asthma and can be used in prophylactic check-ups.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Noura Ayoubi ◽  
Samuel Jalali ◽  
Nikesh Kapadia

Aspergillosis refers to a spectrum of disorders that can occur due to colonization with the Aspergillus fungus. Allergic bronchopulmonary aspergillosis (ABPA) is an airway hypersensitivity reaction to the fungus that is almost exclusively seen in patients with cystic fibrosis or asthma. Here, we present a case of ABPA in a patient with a history of chronic cocaine use and tuberculosis and no history of asthma or cystic fibrosis. The patient had presented with progressively worsening dyspnea for three months as well as a 20-pound weight loss. Diagnosis was made with an elevated IgE against Aspergillus and chest CT findings, which included bronchiectasis and tree-in-bud nodular opacities. The patient was treated with IV methylprednisolone followed by a 4-day course of oral prednisone, with significant improvement. It is our hope to make healthcare providers aware of the potential presence of ABPA in chronic cocaine users and patients with tuberculosis, both of which are not traditionally associated with this condition.


Sign in / Sign up

Export Citation Format

Share Document