scholarly journals Influence of juvenile and mature wood on anatomical and chemical properties of early and late wood from Chinese fir plantation

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Changqing Lu ◽  
Jun Wu ◽  
Qianqian Jiang ◽  
Yamei Liu ◽  
Liang Zhou ◽  
...  

AbstractThe proportion of juvenile wood affects the utilization of wood seriously, and the transition year of juvenile wood (JW) and mature wood (MW) plays a decisive role in the rotation and the modification of wood. To find out the demarcation of JW and MW, the tracheid length (TL) and microfibril angle (MFA) of early wood (EW) and late wood (LW) from four Chinese fir clones were measured by optical microscopy and X-ray diffraction. Then the data were analyzed by the k-means clustering method. The correlation and the differences among wood properties between JW and MW were compared. Results indicated that the LW showed better properties than that of EW, but the anatomical differences between EW and LW did not influence the demarcation of JW and MW. The cluster analysis of TL and MFA showed that the transition year was in the 16th year and the transition zone of EW and LW was different among clones. The MW has longer and wider tracheid, thicker cell walls, and smaller MFA. In terms of chemistry, MW had a higher content of holocellulose, α-cellulose, less content of extract, but no significant difference in lignin content compared with JW. The stabilization of chemical components was earlier than that of the anatomic properties. Correlation analysis showed that there were strong correlations between the chemical composition and anatomical characteristics in JW and MW. In general, compared with chemical components, anatomical indicators were more suitable for JW and MW demarcation. The differences and correlations between JW and MW properties provide a theoretical basis for wood rotation and planting.

2014 ◽  
Vol 974 ◽  
pp. 384-388 ◽  
Author(s):  
Zawawi Daud ◽  
Halizah Awang ◽  
Angzzas Sari Mohd Kassim ◽  
Mohd Zainuri Mohd Hatta ◽  
Ashuvila Mohd Aripin

Proper waste management in Malaysia is needed for the organic wastes such as pineapple leaf and cassava peel where affects the increase the amount of solid waste dump into landfill. Thus, to overcome this problem agro waste material can be constructed in many production industries to commercialize the use of alternative fibre for the paper industry. The main objective of this study is to demonstrate the use of fibrous in pineapple leaf and cassava peel by production of alternative fibre based on chemical properties and surface morphology characteristic. This study conducted for the chemical composition by analysed by TAPPI Test method, Chlorination method and Kuchner-Hoffner method. Every chemical components analyse; Cellulose (Kuchner-Hoofner), Holocellulose (Chlorination method), Hemicellulose (Chlorination method), Hemicellulose, Ash content (T211-om-93), Lignin content (T222-om-98) and Sodium Hydroxide soluble (T203-om-88). The scanning electron microscopy (SEM) was used to observe and determine the morphological characteristic of both crops. The result indicates that pineapple leaf more suitable for becoming an alternative fibre than cassava peels. Pineapple leaves have a high Holocellulose content (85.7%), cassava peels 66%, followed by Cellulose pineapple leaf (66.2%), cassava peels (37.9%). However, hemicellulose content in pineapple leaf (19.5%) less than cassava peels (37.0%). Lignin content of pineapple leaf is lower (4.2%) compared to cassava peels (7.52%) in this study. From SEM images, cassava peel contained abundance fibre such as hemicellulose and cellulose that is held by the lignin in it and Pineapple leaves give a condensed composition of fibre structure. The chemical compositions and morphology study of pineapple leaf and cassava indicate pineapple leaf have a high percentage to be used as an alternative pulp in paper making industry, promoting the green technology. However, cassava peels make some of properties that can also be through for the paper industry.


2021 ◽  
Vol 7 (1) ◽  
pp. 6-12
Author(s):  
Ganis Lukmandaru ◽  
Pormando Manalu ◽  
Tomy Listyanto ◽  
Denny Irawati ◽  
Rini Pujiarti ◽  
...  

Fifteen year-old teak wood samples planted in Ciamis FMU (Perhutani Enterprise) were evaluated for their chemical properties. Three seed sources such as conventional seed, clone, and superior wood and radial positions namely sapwood, outer heartwood, and inner heartwood were the observed factors. The specimens were taken from the bottom parts of their sources. Completely randomized design was used. Cell wall components were analyzed by various gravimetric methods.Analysis of variance and Duncan’s test were performed for data analysis. The results showed that no significant difference in the quantity of cell wall components (cellulose, hemicellulose, and lignin), extractives (ethanol-toluene and hot-water solubles), ash, and silica content among the seed sources. Superior teakwood or Jati Plus Perhutani, which has the highest growth rate (2.1~3.6 cm/year) among others, showed a comparative higher average pH values (7.08~7.38) and solubility in 1% NaOH (17.22~17.83%) than other sources. Radial factors significantly affected ethanol-toluene extractive and lignin content. The ethanol-toluene extractive had the highest content (9.30~11.54%) at the outer part of heartwood while lignin content was the lowest (28.12~30.10%) in the inner part. The result indicated some good characteristics of young teak trees compared to the mature ones in relation to wood processing.


2018 ◽  
Vol 48 (11) ◽  
pp. 1358-1365 ◽  
Author(s):  
Haleh Hayatgheibi ◽  
Nils Erik Gustaf Forsberg ◽  
Sven-Olof Lundqvist ◽  
Tommy Mörling ◽  
Ewa J. Mellerowicz ◽  
...  

Genetic control of microfibril angle (MFA) transition from juvenile wood to mature wood was evaluated in Norway spruce (Picea abies (L.) Karst) and lodgepole pine (Pinus contorta Douglas ex Loudon). Increment cores were collected at breast height (1.3 m) from 5664 trees in two 21-year-old Norway spruce progeny trials in southern Sweden and from 823 trees in two lodgepole pine progeny trials, aged 34–35 years, in northern Sweden. Radial variations in MFA from pith to bark were measured for each core using SilviScan. To estimate MFA transition from juvenile wood to mature wood, a threshold level of MFA 20° was considered, and six different regression functions were fitted to the MFA profile of each tree after exclusion of outliers, following three steps. The narrow-sense heritability estimates (h2) obtained for MFA transition were highest based on the slope function, ranging from 0.21 to 0.23 for Norway spruce and from 0.34 to 0.53 for lodgepole pine, while h2 were mostly non-significant based on the logistic function, under all exclusion methods. Results of this study indicate that it is possible to select for an earlier MFA transition from juvenile wood to mature wood in Norway spruce and lodgepole pine selective breeding programs, as the genetic gains (ΔG) obtained in direct selection of this trait were very high in both species.


1997 ◽  
Vol 64 (3) ◽  
pp. 423-431 ◽  
Author(s):  
A. Lavrenčič ◽  
B. Stefanon ◽  
P. Susmel

AbstractThe in situ dry matter (DM) and neutral-detergent fibre (NDF) degradability kinetics of eight forages (four grass hays and four legume hays, harvested at two different dates) were compared to assess the fitting ability of a first-order and a Gompertz model.The Gompertz model fitted DM degradability data as well as the first-order model and differences between fitted and observed data for the two models were very small but the Gompertz model proved to be statistically superior for the NDF degradability data, especially for the early hours of incubation.A numerical but not significant difference was observed in the estimated rapidly available fraction for DM and NDF, which zvas respectively lower (mean values 24·4 v. 27·8%) and higher (mean values 5·8 v. 1·8%) with the first-order model. More pronounced differences were observed for the estimates of total potential degradability of NDF, which were often significantly lower with the Gompertz model (average values for the eight forages 75·1 v. 72·3%;.The sigmoidal shape of the Gompertz model was more biologically appropriate to describe the initial phases of NDF degradation and was thus applied to the cellulose and hemicellulose degradability data.As the harvesting date progressed through the season, a decrease of the immediately available fraction of DM and nitrogen was generally observed but the effect of harvesting date was not so evident for fibre fractions; the differences within forages were very low. Correlation coefficients between lignin content and total potential degradability of fibre were always high (for NDF, r = −0·96; for hemicellulose r = −0·95; for cellulose r = −0·79; P < 0·001), while the acid-detergent fibre content influenced DM and nitrogen total potential degradability (r = −0·91 and −0·82, respectively).


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 532-538 ◽  
Author(s):  
Dinesh Fernando ◽  
Peter Rosenberg ◽  
Erik Persson ◽  
Geoffrey Daniel

Abstract A study was performed on stone groundwood (SGW) pulps produced on a pilot scale. The behaviour of selected juvenile and mature Norway spruce wood samples was investigated. As revealed by standard tests, sheets formed from juvenile wood showed improved light scattering properties, improved tear and tensile strength, and higher sheet density compared to those formed from mature wood. Scanning electron microscopy indicated that the differences are likely related to the manner of fibre processing and development at the ultrastructural level. Mature wood fibres showed greater fibre end breakage, a smaller long-fibre fraction, enhanced S1 fibrillation and frequently open fibres. In contrast, juvenile fibres had a 14% higher long-fibre fraction and showed typical S2 fibrillation. Fibre development of juvenile wood showed fibrillation features similar to those previously reported for thermomechanical pulp fibres. In both cases, the structural hierarchy of the wood fibre cell wall and the microfibril angle of S2 and S1 layers govern cell-wall splitting and fibrillation progression. The superior quality of the fibre furnish prepared from juvenile fibres compared to mature fibres with SGW pulping may offer an alternative process for more effective utilisation of raw materials such as top logs rich in juvenile wood.


2015 ◽  
Vol 39 (4) ◽  
pp. 751-758 ◽  
Author(s):  
Jerome Alteyrac

ABSTRACTFour stands of 28-year-old radiata pine (Pinus radiata D. Don) grown in the eighth region (Biobio) of Chile were sampled to determine the effect of tree spacing on the microfibril angle. The samples were taken at two different stem levels of the tree, 2.5 m and 7.5 m, with increment strip taken in the Nothern direction. The four experimental stands were characterized by the following spacing 2x2, 2x3, 3x4 and 4x4. The microfibril angle was measured by X-ray diffraction with the SilviScan technology at the FP-Innovation-Paprican Division in Vancouver, Canada. The results showed a significant effect of tree spacing on the microfibril angle in both juvenile wood and mature wood as well as at the two stem levels considered. The minimum (9.42º) was reached in 2x2 stand at 7.5 m in mature wood, while maximum microfibril angle (24.54º) was obtained in 2x3 stand at 2.5 m in juvenile wood. Regarding the effect of tree spacing, 4x4 stand had the lowest microfibril angle,except in mature wood at 7.5 m where 4x4 had the highest microfibril angle (11°) of the four stands.


Holzforschung ◽  
2019 ◽  
Vol 73 (10) ◽  
pp. 957-965 ◽  
Author(s):  
Qian He ◽  
Tianyi Zhan ◽  
Haiyang Zhang ◽  
Zehui Ju ◽  
Lu Hong ◽  
...  

Abstract A high voltage electrostatic field (HVEF) was applied to enhance the bonding performance of wood composites prepared with phenol-formaldehyde (PF) adhesive and different wood species and radial cut combinations. Four wood species including Masson pine (Pinus massoniana), Chinese fir (Cunninghamia lanceolata), poplar (Populus tomentosa) and ayous (Triplochiton scleroxylon) were studied. The results of HVEF-treatment turn out to be species-dependent, and are related to the anatomical and chemical properties of wood. It was demonstrated by a statistical approach that the lignin content is the most significant parameter with a good correlation coefficient (R2 > 0.8). High lignin content leads to high free radical concentration at the wood surface and the HVEF enhanced the adhesive penetration depth, the maximal density and the bonding strength (Bst) at the interphase. On the contrary, high extract contents and large lumina diameters negatively impacted the surface modification by HVEF. The magnitude of the effects was in the following order: ayous < poplar < Masson pine < Chinese fir.


1986 ◽  
Vol 16 (3) ◽  
pp. 497-501 ◽  
Author(s):  
E. P. Swan ◽  
R. M. Kellogg

Taxonomically, black cottonwood and balsam poplar are varieties of the same species. However, black cottonwood is excluded from the "northern aspen" species group embraced by the National Lumber Grading Agency grading rules for dimension lumber and from the use as core material in softwood plywood. This study examines the chemical properties of these two species varieties to assess whether continuing differentiation in their utilization is justified. Black cottonwood was sampled at three sites in British Columbia (Fraser Valley, Squamish Valley, Kingcome Inlet) and balsam poplar was sampled at three sites in Alberta (Lodgepole, Slave Lake, Lac La Biche). Representative subsamples of wood and bark meal were prepared from each original sample. Black cottonwood and balsam poplar did not differ significantly in lignin content. Within each species, the heartwood had higher lignin contents than the sapwood. The mean extractive content of the female trees is higher than that of the male trees, but this was statistically significant for only the benzene–alcohol extractive content of the black cottonwood sapwood. The pH and acidity did not differ significantly between species. However, there was a large difference between heart-wood and sapwood pH values in both species; sufficient to provide a basis for their differentiation. Acidity values were higher for both sapwoods than for heartwoods. The chemical component contents of black cottonwood and balsam poplar bark were the same, except for the benzene–alcohol extractive content, which was twice as great in balsam poplar. However, the same chemical components were found in each extractive mixture. Results do not provide any basis for separate commercial utilization of these two varieties of the same species.


2019 ◽  
Vol 4 (1) ◽  
pp. 32-36
Author(s):  
Amsalu Tolessa ◽  
Fikremariam Haile ◽  
Abraham Dilnesa ◽  
Buzayehu Desisa ◽  
Tegene Tantu ◽  
...  

This paper studied the chemical composition of cultivated 3, 4 and 5 year-old highland bamboo (Y. alpina) which were classified into three position (top, medium and bottom) to determined the main compositions especially cellulose, lignin, extractive and ash content. From all culms representative samples were converted to the required size of wood chips to prepared sample for chemical testing. Then the specimens prepared from bottom, middle and top portions for the three ages were used to determine the chemical properties in accordance to American Society for Testing and Materials (ASTM) standards except for cellulose test determined according to Kurschner and Hoffer method. All parameters in the experiment were expressed by percent based on dry basis. From this research, we have found small but significant increases in mean cellulose content from the base to the top of the culm at all three ages. The lignin content in Y. alpina species of bamboo is in the ranged of 23.04 to 30.03%. The mean values of the chemical constituents in 3, 4 and 5- year-old culms were 51.83, 54.94 and 49.78% for cellulose content, 28.28, 24.99 and 24.53% for lignin content, 7.8, 10.09, and 9.54% for alcohol-toluene extractive, respectively. In general, the comprehensive knowledge of the chemical components in the bamboo species will facilitate the use of the materials in the forestry industrial sector and help to enhance their utilization in the chemical and bio-chemical related industry.


IAWA Journal ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 431-442 ◽  
Author(s):  
Yafang Yin ◽  
Mingming Bian ◽  
Kunlin Song ◽  
Fuming Xiao ◽  
Jiang Xiaomei

Radial variations in microfibril angle (MFA) and their effect on the mechanical properties of plantation-grown Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) were investigated with the aim of achieving an effective utilization of the wood. Correlations between MFA and mechanical properties, including longitudinal modulus of elasticity (MOEL), static bending strength (MOR) and compression strength parallel-to-the-grain (CS), were analyzed for predicting the quality of timber. The results indicated that MFA had a greater variation in juvenile wood than in mature wood. The biggest change occurred close to the pith in Chinese fir. The outer-rings (rings 9–30 from the pith) have a relatively low MFA, together with high mechanical properties and high density, when compared with the inner-rings (rings 1–8 from the pith). The MFA had significant negative curvilinear correlations with all the mechanical properties (MOEL, MOR and CS) of Chinese fir, with the value of r2 being 0.88, 0.69 and 0.74 respectively. The correlation between the MFA and basic density (BD) was strong in certain consecutive rings (rings 5–30 from the pith), but this did not apply across the whole billet, i.e. from the pith to the bark.


Sign in / Sign up

Export Citation Format

Share Document