scholarly journals THE COST OF TRANSPORT (COT) OF A HIGH ENERGY EFFICIENCY HYBRID ROBOT

10.6036/9828 ◽  
2021 ◽  
Vol 96 (1) ◽  
pp. 214-219
Author(s):  
FRANCISCO JAVIER LÓPEZ LOMBRAÑA ◽  
ANGEL GASPAR GONZALEZ RODRIGUEZ ◽  
ANTONIO GONZALEZ RODRIGUEZ ◽  
DAVID RODRIGUEZ ROSA ◽  
GUILLERMO RUBIO GOMEZ

Purpose: The cost of transport is one of the most important values to the efficiency and operation autonomy of a walking robot. This analysis involves factors as the weight, consumption of the actuators, speeds, accelerations, work surfaces, step cycle model or distance travelled, which must be studied in detail to produce stable and energy-efficient locomotion. This paper presents the results obtained for the cost of transport of a hybrid robot with two front legs and two rear wheels, with a total weight of 50 kg in different scenarios. Methodology/approach - The transportation cost of the proposed hybrid robot is obtained by carrying out a detailed analysis of the kinematics, dynamics, stability and energy consumption. Findings - A satisfactory value of efficiency has been obtained, in terms of cost of transport, owing to a gravitationally decoupled design of the legs. The cost of transport of the robot proposed is between 0.11 and 0.24, depending on the work environment in which it operates, that is, walking on a smooth horizontal plane without additional load. Originality/value – This work presents a new design of a gravitationally decoupled robotic leg by means of a new scheme in which the leg is composed of three four-bar mechanisms that can be synthesized independently. These three mechanisms involve frontal and vertical movement within the same plane of movement. One mechanism generates a horizontal path for tow, while another generates a vertical path and a third has the specific mission of making the tow velocity constant when the corresponding motor is operated at a constant velocity. The overall goal of the mechanisms is to improve robot's efficiency. Key Words: Cost of transport, gravitationally uncoupled motion, energy efficiency, experimental validation, hybrid robot.

Author(s):  
Petar Radanliev

The slate aggregate has long been perceived as a substandard, low quality waste material with its physical and chemical properties not being competitive with those of the primary aggregates. It is assumed that the slate aggregate particles are not strong, that is not durable and will not compact. This research aims to address those claims and review the available literature on the performance of the slate aggregate. The review inaugurates by analysing the physical, chemical and mechanical properties of slate, before expanding into a literature review of laboratory testing’s on the effect of moisture content on density, compaction and layer thickness of slate aggregate.The paper reviews case studies of construction projects in North Wales, where the slate aggregate has been used for general fill and road building for many years. Some of the case studies include the A55 coastal road and duelling of the A5 in Anglesey (WRAP, 2004), where slate aggregate was successfully used as sub-base. The paper also investigates why many civil engineers are reluctant to use the slate aggregate and regard the material as sub-standard, flaky aggregate. The research paper reviews the potential usages and various products the slate aggregate is suitable for and satisfies the requested standards. The final topic reviewed is the cost of transporting slate aggregate compared with the cost of transport for primary aggregate and the introduction of the Primary Aggregates Tax (Parliament of the United Kingdom, 2011). The last topic includes a critical analyses of the claims that the slate aggregate a commercially viable construction material despite its remote location (Woodward et al, 2004). The transportation cost and the supply chain complexities must be evaluated prior to considering the long-term sustainability of the product (Radanliev et al1-6, 2014, 2015, 2016).


2018 ◽  
Vol 931 ◽  
pp. 436-442 ◽  
Author(s):  
Sergey V. Fedosov ◽  
Vadim N. Fedoseev ◽  
Ludmila A. Oparina

The current problem of ensuring energy saving and improving the energy efficiency of buildings and structures for agricultural purposes is identified. The geopolitical situation, import substitution programs and agricultural development programs set the task of developing domestic vegetable production, which in its turn requires the construction of new vegetable store buildings, as in most regions of Russia the harvest is collected once a year. In this regard, the current task is to ensure the energy conservation and achieve high energy efficiency of the vegetable store buildings. Energy saving is the basic technology for creating effective agriculture. The purpose of the study is to analyse the requirements for insulation materials for buildings and vegetable store facilities, taking into account energy efficiency and life cycle cost. The authors analysed the criteria for choosing a heater for the vegetable stores: low coefficient of thermal conductivity, water absorption, sorption humidity, frost resistance, biostability, lack of cold bridges, long service life. It is proposed to supplement the criteria for choosing a building insulation with the characteristics of the life cycle cost and the service life. Design and construction of agricultural buildings is proposed to be implemented using the concepts of BLC and BIM, the use of which gives an opportunity to design buildings with optimal energy efficiency parameters and take into account the cost of the life cycle. The cost of the buildings life cycle is the main of all the performance indicators when comparing alternative design options that differ by the application of advanced technologies and material resources and the contractors' offers when concluding contracts not only for purchase, but for servicing the subject of trades during its service life. The conclusions are made about the advantages of using foamed polyethylene foam for warming vegetable store buildings, as well as the conclusion about the expediency of adding criteria determining the sustainable development of the human environment, namely life cycle cost, service life, recycling ability. The formula for calculating the cost of the buildings life cycle, adapted to the specificity of buildings for agricultural purposes, is given.


Author(s):  
Sinan Sahin Candan ◽  
Uluc Saranli ◽  
Yigit Yazicioglu

Abstract Spring Loaded Inverted Pendulum (SLIP) is a simple, descriptive and accurate model to study dynamic legged locomotion. Critical design decisions to realize SLIP based legged robots with high energy efficiency and control accuracy are actuation topology and controller. Recent studies converge on series elastic actuation (SEA) and parallel elastic actuation (PEA) regarding actuation whereas, a recently introduced control method, virtual tuning of damping (VTD) have proven to be superior for SEA over other control techniques. However, actuation topology is still under discussion and it is a highly coupled problem with the control approach. In this study, vertical hoppers with PEA and SEA configurations are compared under VTD controller to determine the one results in better energy efficiency and accuracy. PEA and SEA models are extended with drive-train details to provide more realistic results. Models are simulated with various gearboxes and motors to understand their effects. Comparisons among optimum topologies showed that VTD-PEA achieves 0.02% percent apex error where VTD-SEA achieves 0.5% apex-to-apex accuracy (25 times). VTD-PEA also achieved 40% better energy efficiency and 38% higher cost of transport than VTD-SEA.


2018 ◽  
Vol 180 ◽  
pp. 02012
Author(s):  
Janusz Biliński

High energy efficiency and increasing the working frequency of the converter will make it possible to minimize the size of the cooling system and reduce energy consumption. The use of the SiC technology in propulsion drives increases the efficiency of the converter by 1÷1.5%. Simultaneously, higher working frequency reduces losses in the traction motor, significantly lowering the cost of the energy consumed by the vehicle. Auxiliary converters using the SiC technology are a new quality. The reduction of weight and size is very significant (ca. 40÷50%). Higher switching frequency reduces the size of magnetic components (ca. 80%), and higher converter efficiency minimizes the size of the cooling system. The overall efficiency of the converter is extremely high (94÷96%). This paper presents comparison of Si and SiC parameters which are important for modern EV solutions. Paper presents also parameters of SiC traction inverter and auxiliary converter, designed and manufactured as state-of-the-art product for modern electric bus.


2019 ◽  
Vol 9 (1) ◽  
pp. 152 ◽  
Author(s):  
Angelo Raciti ◽  
Santi Agatino Rizzo ◽  
Giovanni Susinni

Energy-saving lamps are equipped with converters enabling high energy efficiency at the cost of injecting very distorted currents on the mains. The problem is more complex in the emerging smart-lighting scenario where these lamps are also used to perform additional tasks. Harmonics mitigation at the lamp level is expensive; consequently, an optimal lighting system design aiming at reducing both costs and current distortion of the whole lighting system is necessary. A tool able to emulate the current drawn from the lamps is necessary for optimal design. Such a tool has also to consider the fluctuations of the voltage on the mains that usually occur throughout the day. In this perspective, a parametric PSpice circuit is proposed and the netlist is reported in this work. Moreover, the simple procedure to be adopted for computing the parameters is also described. The validation has confirmed the ability of the proposed circuit in emulating the current drawn from various CFLs and LED lamps under different supplying voltage.


Author(s):  
Yuriy Spirin ◽  
Vladimir Puntusov

In the Kaliningrad region there are about 70 % of all polder lands in Russia. On these lands with high potential fertility, it is advisable to intensive agriculture. The area for the average moisture year is an area with excessive moisture, which indicates the need to maintain the rate of drainage on agricultural land. Many different factors play a role in ensuring the drainage rate, one of which is pumping stations and pumping equipment installed on them. An important parameter in the use of pump-power equipment is energy consumption, since in this industry it is a considerable expense item. Improving the energy efficiency of pumping stations on polders is a pressing issue today. At the majority of polder pumping stations, domestic power pumping equipment is installed with excess power and head of 4–8 meters, and a new one is selected based on the maximum possible head in a given place. In the Kaliningrad region, the energy efficiency of polder pumping equipment has never been analyzed. In this paper, a statistical processing of the geodesic pressure of water at the polder pumping stations of the Slavsk region for 2000–2002 was carried out. On the basis of these data and data on the hydraulic characteristics of pressure pipelines, the calculated water pressures were determined for the rational selection of pumping equipment. The calculation of the economic efficiency of pumps with optimal power compared with pumps of excess capacity. The results of the study can serve as a justification for the transition to the pumping equipment with less power and pressure, which will lead to a decrease in the cost of money for electricity.


2020 ◽  
Vol 5 (1) ◽  
pp. 456
Author(s):  
Tolulope Latunde ◽  
Joseph Oluwaseun Richard ◽  
Opeyemi Odunayo Esan ◽  
Damilola Deborah Dare

For twenty decades, there is a visible ever forward advancement in the technology of mobility, vehicles and transportation system in general. However, there is no "cure-all" remedy ideal enough to solve all life problems but mathematics has proven that if the problem can be determined, it is most likely solvable. New methods and applications will keep coming to making sure that life problems will be solved faster and easier. This study is to adopt a mathematical transportation problem in the Coca-Cola company aiming to help the logistics department manager of the Asejire and Ikeja plant to decide on how to distribute demand by the customers and at the same time, minimize the cost of transportation. Here, different algorithms are used and compared to generate an optimal solution, namely; North West Corner Method (NWC), Least Cost Method (LCM) and Vogel’s Approximation Method (VAM). The transportation model type in this work is the Linear Programming as the problems are represented in tables and results are compared with the result obtained on Maple 18 software. The study shows various ways in which the initial basic feasible solutions to the problem can be obtained where the best method that saves the highest percentage of transportation cost with for this problem is the NWC. The NWC produces the optimal transportation cost which is 517,040 units.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


Sign in / Sign up

Export Citation Format

Share Document