High temperature impression creep behavior and microstructures of wrought ZM21 magnesium alloy

Author(s):  
D Ebenezer ◽  
SR Koteswara Rao ◽  
S Vijayan ◽  
R Rajeswari

Mg-Zn alloys are promising candidates for their application in automotive, electronics and aerospace applications. For their successful application, one of the performance parameters that needs to be evaluated is their creep behavior at elevated temperatures. Hence this paper evaluates the high temperature creep behavior of wrought ZM21 magnesium alloy by impression test The tests were performed under constant temperature and stress. A flat ended cylindrical punch was used to create impressions. The temperature was varied between 398 K and 598 K while the stresses were varied from 200 MPa to 500 MPa (normalized stress: 0.014 ≤  σimp/ G ≥ 0.032). A power-law creep deformation was assumed to calculate creep exponent and activation energy using the steady state minimum impression velocity obtained from impression tests. The creep behavior was analyzed with the help of impression creep curves and plastic deformation was analyzed with the help of micrographs. It was found that creep exponent varied between 4.5 and 6 and activation energy between 73.28 and 113.35 kJ/mol were obtained. From the study it was concluded that the creep mechanism involved was pipe-diffusion-controlled dislocation climb.

Alloy Digest ◽  
1990 ◽  
Vol 39 (1) ◽  

Abstract ALCOA ALUMINUM ALLOY 7050 is an aluminum-zinc-copper-magnesium alloy with a superior combination of strength, stress-corrosion cracking resistance and toughness, particularly in thick sections. In thin sections it also possesses an excellent combination of properties that are important for aerospace applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-233. Producer or source: Aluminum Company of America. Originally published as Aluminum 7050, January 1979, revised January 1990.


2008 ◽  
Vol 604-605 ◽  
pp. 212-222 ◽  
Author(s):  
S. Spigarelli ◽  
Mohamad El Mehtedi ◽  
P. Ricci

The high temperature workability of the ZEK200 Mg-alloy produced by Direct Chill casting (DC) was investigated by torsion testing between 200 and 450°C. The alloy exhibited a higher strength and a slightly lower equivalent strain to fracture than AZ31 and ZM21 produced by DC. The calculation of the constitutive equation gave a value of the activation energy for high temperature deformation close to 175 kJ/mol, in line with those calculated by following the same procedure in AZ31 and ZM21. Partial or complete recrystallization of the deformed structure was observed at 350 and 400°C respectively. Grain growth occurred after recrystallization in the samples tested at 450°C.


2012 ◽  
Vol 322 ◽  
pp. 33-39 ◽  
Author(s):  
Sergei Zhevnenko ◽  
Eugene Gershman

High-temperature creep experiments were performed on a Cu-2.8 ат.% Co solid solution. Cylindrical foils of 18 micrometers thickness were used for this purpose. Creep tests were performed in a hydrogen atmosphere in the temperature range of about from 1233 K to 1343 K and at stresses lower than 0.25 MPa. For comparison, a foil of pure copper and Cu-20 at.% Ni solid solution were investigated on high temperature creep. Measurements on the Cu foil showed classical diffusional creep behavior. The activation energy of creep was defined and turned out to be equal 203 kJ/mol, which is close to the activation energy of bulk self-diffusion of copper. There was a significant increase in activation energy for the Cu-20 at.% Ni solid solution. Its activation energy was about 273 kJ/mol. The creep behavior of Cu-Co solid solution was more complicated. There were two stages of diffusional creep at different temperatures. The extremely large activation energy (about 480 kJ/mol) was determined at relatively low temperature and a small activation energy (about 105 kJ/mol) was found at high temperatures. The creep rate of Cu-Co solid solution was lower than that of pure copper at all temperatures. In addition, the free surface tension of Cu-2.8 ат.% Co was measured at different temperatures from 1242 K to 1352 K. The surface tension increases in this temperature range from 1.6 N/m to 1.75 N/m. There were no features on the temperature dependence of the surface tension.


10.30544/101 ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Mohsen Yousefi ◽  
Mehdi Dehnavi ◽  
S.M. Miresmaeili

The effects of 1.5, 2.5 and 3.5 wt.% Cu additions on the microstructure and creep behavior of the as-cast Al-9Si alloy were investigated by impression tests. The tests were performed at temperature ranging from 493 to 553 K and under punching stresses in the range 300 to 414 MPa for dwell times up to 3000 seconds. The results showed that, for all loads and temperatures, the Al–9Si–3.5Cu alloy had the lowest creep rates and thus, the highest creep resistance among all materials tested. This is attributed to the formation of hard intermetallic compound of Al2Cu, and higher amount of α-Al2Cu eutectic phase. The stress exponent and activation energy are in the ranges of 5.2- 7.2 and 115 -150 kJ/ mol, respectively for all alloys. According to the stress exponent and creep activation energies, the lattice and pipe diffusion- climb controlled dislocation creep were the dominant creep mechanism.


Author(s):  
Richard R. Grzybowski ◽  
Ben Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye toward the conception and implementation of reliable and affordable high temperature systems.


Author(s):  
K.J. Hollis ◽  
D.P. Butt ◽  
R.G. Castro

Abstract The use of MoSi2 as a high temperature oxidation resistant structural material is hindered by its poor elevated temperature creep resistance. The addition of second phase Si3N4 holds promise for improving the creep properties of MoSi2 without decreasing oxidation resistance. The high temperature impression creep behavior of atmospheric plasma sprayed (APS) and hot pressed (HP) MoSi2/Si3N4 composites was investigated. Values for steady state creep rates, creep activation energies, and creep stress exponents were measured. Grain boundary sliding and splat sliding were found to be the dominant creep mechanisms for the APS samples while grain boundary sliding and plastic deformation were found to be the dominant creep mechanisms for the HP samples.


2005 ◽  
Vol 20 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Tiandan Chen ◽  
Martha L. Mecartney

An alumina-based ceramic codispersed with 15 vol% zirconia and 15 vol% mullite (AZM) was synthesized by reactive processing, and the creep behavior was compared to alumina with 30 vol% zirconia (AZ). Constant stress compressive creep behavior for AZM exhibited a stress exponent of 2 and an activation energy of 770 KJ/mol, while a similar stress exponent but lower activation energy of 660 KJ/mol was found for AZ. The strain rate of AZM, however, was more than twice that of the AZ under the same deformation conditions, indicating a better potential for superplastic shape forming.


Sign in / Sign up

Export Citation Format

Share Document