rhizosphere environment
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinlian Zhang ◽  
Beilei Wei ◽  
Rushuang Wen ◽  
Yue Liu ◽  
Ziting Wang

Strategies involving genes in the dehydration-responsive element binding (DREB) family, which participates in drought stress regulation, and intercropping with legumes are becoming prominent options in promoting sustainable sugarcane cultivation. An increasing number of studies focusing on root interactions in intercropping systems, particularly involving transgenic crops, are being conducted to better understand and thus, harness beneficial soil microbes to enhance plant growth. We designed experiments to investigate the characteristics of two intercropping patterns, soybean with wild-type (WT) sugarcane and soybean with genetically modified (GM) Ea-DREB2B-overexpressing sugarcane, to assess the response of the rhizosphere microbiota to the different cropping patterns. Bacterial diversity in the rhizosphere microbial community differed between the two intercropping pattens. In addition, the biomass of GM sugarcane that intercropped with soybean was significantly improved compared with WT sugarcane, and the aboveground biomass and root biomass of GM soybean intercropping sugarcane increased by 49.15 and 46.03% compared with monoculture. Furthermore, a beneficial rhizosphere environment for the growth of Actinobacteria was established in the systems intercropped with GM sugarcane. Improving the production mode of crops by genetic modification is a key strategy to improving crop yields and provides new opportunities to further investigate the effects of intercropping on plant roots and soil microbiota. Thus, this study provides a basis for selecting suitable sugarcane–soybean intercropping patterns and a theoretical foundation for a sustainable sugarcane production.


Author(s):  
Guanglong Chen ◽  
Yizheng Li ◽  
Shulin Liu ◽  
Muhammad Junaid ◽  
Jun Wang

2021 ◽  
Vol 166 ◽  
pp. 104080
Author(s):  
Tianyun Shao ◽  
Xiaohua Long ◽  
Yuqing Liu ◽  
Xiumei Gao ◽  
Manqiang Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Liu ◽  
Wenqing Ma ◽  
Hongliang He ◽  
Ziting Wang ◽  
Yanhong Cao

Intercropping between sugarcane and soybean is widely used to increase crop yield and promote the sustainable development of the sugarcane industry. However, our understanding of the soil microenvironment in intercropping systems, especially the effect of crop varieties on rhizosphere soil bacterial communities, remains poor. We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9 (ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field interplanting experiments. These two cultivars of sugarcane have good drought resistance. Rhizosphere soil samples were collected from the two intercropping systems to measure physicochemical properties and soil enzyme activities and to extract total soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere bacterial community was significantly different between the two intercropping systems. Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria, increasing the available nitrogen content by 18% compared with that with ZZ1. In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere environment than ZZ1, thus providing favorable conditions for sugarcane growth. These results provide guidance for the sugarcane industry, especially for the management of sugarcane and soybean intercropping in Guangxi, China.


Author(s):  
Kendall Carroll Lee ◽  
Ali Missaoui ◽  
Kishan Mahmud ◽  
Holly Presley ◽  
Marin Lonnee

Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloe genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloe endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloe infection of grass and stress affect the rhizosphere environment of the plant.


2021 ◽  
Author(s):  
Dongqin Li ◽  
Haishuo Gao ◽  
Xinyu Du ◽  
Junhao Qin ◽  
Huashou Li ◽  
...  

Abstract Achira (Canna indica L.) has not yet been tested for its potential in removing perchlorate (ClO4−) from wastewater. In this study, constructed wetlands with and without achira were used to investigate the removal efficiency and removal mechanism of perchlorate. The results showed that more ClO4− was removed by the wetlands with achira relative to those without. Perchlorate removal in the wetlands without achira decreased with time, whereas perchlorate in the wetlands with achira was stably removed. In terms of ClO4− content, the achira tissues were in the descending order of: leaf > aerial stem > flower or rhizome > root. Perchlorate was concentrated in leaves (more than 55.8%) rather than in root (less than 0.67%). Mass balance calculation showed that plant uptake accounted for 5.81–7.34% of initial ClO4− input, while microbial degradation accounted for 29.39–62.48%. The wetlands with achira were favorable for soil microorganism growth and proliferation and in turn ClO4− biodegradation. Furthermore, the effluent pH increased in achira wetland columns and in turn promoting ClO4− removal. The results indicating that the wetlands with achira promote ClO4− removal by improving the rhizosphere environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinichi Yamazaki ◽  
Hossein Mardani-korrani ◽  
Rumi Kaida ◽  
Kumiko Ochiai ◽  
Masaru Kobayashi ◽  
...  

AbstractThe plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere are different from the outer soil region (bulk soil). They establish characteristic conditions including microbiota, metabolites, and minerals, and they can directly affect plant growth and development. However, comprehensive insights into those characteristic environments, especially the rhizosphere, and molecular mechanisms of their formation are not well understood. In the present study, we investigated the spatiotemporal dynamics of the root-associated environment in actual field conditions by multi-omics analyses (mineral, microbiome, and transcriptome) of soybean plants. Mineral and microbiome analyses demonstrated a characteristic rhizosphere environment in which most of the minerals were highly accumulated and bacterial communities were distinct from those in the bulk soil. Mantel’s test and co-abundance network analysis revealed that characteristic community structures and dominant bacterial taxa in the rhizosphere significantly interact with mineral contents in the rhizosphere, but not in the bulk soil. Our field multi-omics analysis suggests a rhizosphere-specific close association between the microbiota and mineral environment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yue Liu ◽  
Huichun Yang ◽  
Qi Liu ◽  
Xiaowen Zhao ◽  
Sasa Xie ◽  
...  

Intercropping of soybean and sugarcane is an important strategy to promote sustainable development of the sugarcane industry. In fact, our understanding of the interaction between the rhizosphere and bacterial communities in the intercropping system is still evolving; particularly, the influence of different sugarcane varieties on rhizosphere bacterial communities in the intercropping process with soybean, still needs further research. Here, we evaluated the response of sugarcane varieties ZZ1 and ZZ9 to the root bacterial community during intercropping with soybean. We found that when ZZ9 was intercropped with soybean, the bacterial diversity increased significantly as compared to that when ZZ1 was used. ZZ9 played a major role in changing the bacterial environment of the root system by affecting the diversity of rhizosphere bacteria, forming a rhizosphere environment more conducive to the growth of sugarcane. In addition, our study found that ZZ1 and ZZ9 had differed significantly in their utilization of nutrients. For example, nutrients were affected by different functional genes in processes such as denitrification, P-uptake and transport, inorganic P-solubilization, and organic P-mineralization. These results are significant in terms of providing guidance to the sugarcane industry, particularly for the intercropping of sugarcane and soybean in Guangxi, China.


Author(s):  
Tianyun Shao ◽  
Xiaohua Long ◽  
Xiumei Gao ◽  
Manqiang Liu ◽  
Zed Rengel

Salinity is not only a threat to organisms and ecosystems, but also a major factor restricting the development of agricultural production. This study aimed to explore the modification effect of in-situ Jerusalem artichoke (genotype NY-1) cultivation on the rhizosphere micro-ecological environment in the saline-alkali region along the southeast coast of China. We analyzed the change of carbon and nitrogen in the saline soil from a microbial perspective, through the quantification of the area of root channels, rhizosphere secretions and soil microbiome (cbbL, cbbM and nifH). The root channels of NY-1 not only improved the physical structure of saline soil, but also provided a living space for microorganisms, afforded basic conditions for the optimization of the soil micro-ecological environment. In addition, rhizosphere secretions (from roots of NY-1 as well as microorganisms), such as carbohydrates, hydrocarbons, acids, etc., could be considered as a way to improve the saline-alkali soil habitat. NY-1 increased the diversity and abundance of autotrophic and nitrogen-fixing bacteria in saline soil (rhizosphere > bulk soils), which should be a biological way to increase the amount of carbon and nitrogen fixation in soil. Moreover, some of the detected genera (Sideroxydans, Thiobacillus, Sulfuritalea, Desulfuromonas, etc.) participate in the carbon and nitrogen cycles, and in the biogeochemical cycle of other elements. In short, Jerusalem artichoke can improve not only the physical and chemical properties of saline-alkali soil, but also promote material circulation and energy flow in the micro-ecological rhizosphere environment of saline soils.


Sign in / Sign up

Export Citation Format

Share Document