scholarly journals Genetically Modified Sugarcane Intercropping Soybean Impact on Rhizosphere Bacterial Communities and Co-occurrence Patterns

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinlian Zhang ◽  
Beilei Wei ◽  
Rushuang Wen ◽  
Yue Liu ◽  
Ziting Wang

Strategies involving genes in the dehydration-responsive element binding (DREB) family, which participates in drought stress regulation, and intercropping with legumes are becoming prominent options in promoting sustainable sugarcane cultivation. An increasing number of studies focusing on root interactions in intercropping systems, particularly involving transgenic crops, are being conducted to better understand and thus, harness beneficial soil microbes to enhance plant growth. We designed experiments to investigate the characteristics of two intercropping patterns, soybean with wild-type (WT) sugarcane and soybean with genetically modified (GM) Ea-DREB2B-overexpressing sugarcane, to assess the response of the rhizosphere microbiota to the different cropping patterns. Bacterial diversity in the rhizosphere microbial community differed between the two intercropping pattens. In addition, the biomass of GM sugarcane that intercropped with soybean was significantly improved compared with WT sugarcane, and the aboveground biomass and root biomass of GM soybean intercropping sugarcane increased by 49.15 and 46.03% compared with monoculture. Furthermore, a beneficial rhizosphere environment for the growth of Actinobacteria was established in the systems intercropped with GM sugarcane. Improving the production mode of crops by genetic modification is a key strategy to improving crop yields and provides new opportunities to further investigate the effects of intercropping on plant roots and soil microbiota. Thus, this study provides a basis for selecting suitable sugarcane–soybean intercropping patterns and a theoretical foundation for a sustainable sugarcane production.

2019 ◽  
Vol 70 (3) ◽  
pp. 234
Author(s):  
Xiaojin Zou ◽  
Zhanxiang Sun ◽  
Ning Yang ◽  
Lizhen Zhang ◽  
Wentao Sun ◽  
...  

Intercropping is commonly practiced worldwide because of its benefits to plant productivity and resource-use efficiency. Belowground interactions in these species-diverse agro-ecosystems can greatly contribute to enhancing crop yields; however, our understanding remains quite limited of how plant roots might interact to influence crop biomass, photosynthetic rates, and the regulation of different proteins involved in CO2 fixation and photosynthesis. We address this research gap by using a pot experiment that included three root-barrier treatments with full, partial and no root interactions between foxtail millet (Setaria italica (L.) P.Beauv.) and peanut (Arachis hypogaea L.) across two growing seasons. Biomass of millet and peanut plants in the treatment with full root interaction was 3.4 and 3.0 times higher, respectively, than in the treatment with no root interaction. Net photosynthetic rates also significantly increased by 112–127% and 275–306% in millet and peanut, respectively, with full root interaction compared with no root interaction. Root interactions (without barriers) contributed to the upregulation of key proteins in millet plants (i.e. ribulose 1,5-biphosphate carboxylase; chloroplast β-carbonic anhydrase; phosphoglucomutase, cytoplasmic 2; and phosphoenolpyruvate carboxylase) and in peanut plants (i.e. ribulose 1,5-biphosphate carboxylase; glyceraldehyde-3-phosphate dehydrogenase; and phosphoglycerate kinase). Our results provide experimental evidence of a molecular basis that interspecific facilitation driven by positive root interactions can contribute to enhancing plant productivity and photosynthesis.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 792 ◽  
Author(s):  
Andrés R. Alcántara

Biocatalysis is the term used to describe the application of any type of biocatalyst (enzymes, as isolated preparations of wild-type or genetically modified variants, or whole cells, either as native cells or as recombinant expressed proteins inside host cells) in a given synthetic schedule [...]


2020 ◽  
Vol 71 (14) ◽  
pp. 4285-4297 ◽  
Author(s):  
Qingfang Lin ◽  
Song Wang ◽  
Yihang Dao ◽  
Jianyong Wang ◽  
Kai Wang

Abstract Transpiration occurs through stomata. The alteration of stomatal apertures in response to drought stress is an important process associated with water use efficiency (WUE). Trehalose-6-phosphate phosphatase (TPP) family genes have been reported to participate in adjustment of stomatal aperture. However, there have been no reports of the trehalose metabolism pathway genes improving WUE, and the upstream signalling pathway modulating these genes is not clear. Here, we demonstrate that a member of the TPP gene family, AtTPPI, confers drought resistance and improves WUE by decreasing stomatal apertures and improving root architecture. The reduced expression of AtTPPI caused a drought-sensitive phenotype, while its overexpression significantly increased drought tolerance. Abscisic acid (ABA)-induced stomatal closure experiments confirmed that AtTPPI mutation increased the stomatal aperture compared with that of wild-type plants; in contrast, overexpression plants had smaller stomatal apertures than those of wild-type plants. Moreover, AtTPPI mutation also caused stunted primary root length and compromised auxin transport, while overexpression plants had longer primary root lengths. Yeast one-hybrid assays showed that ABA-responsive element-binding factor1 (ABF1), ABF2, and ABF4 directly regulated AtTPPI expression. In summary, the way in which AtTPPI responds to drought stress suggests that AtTPPI-mediated stomatal regulation is an important mechanism to cope with drought stress and improve WUE.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Eva E. Spieler ◽  
Eva Moritz ◽  
Silke Stertz ◽  
Benjamin G. Hale

ABSTRACT Natural adaptation of an antigenically novel avian influenza A virus (IAV) to be transmitted efficiently in humans has the potential to trigger a devastating pandemic. Understanding viral genetic determinants underlying adaptation is therefore critical for pandemic preparedness, as the knowledge gained enhances surveillance and eradication efforts, prepandemic vaccine design, and efficacy assessment of antivirals. However, this work has risks, as making gain-of-function substitutions in fully infectious IAVs may create a pathogen with pandemic potential. Thus, such experiments must be tightly controlled through physical and biological risk mitigation strategies. Here, we applied a previously described biological containment system for IAVs to a 2009 pandemic H1N1 strain and a highly pathogenic H5N1 strain. The system relies on deletion of the essential viral hemagglutinin (HA) gene, which is instead provided in trans, thereby restricting multicycle virus replication to genetically modified HA-complementing cells. In place of HA, a Renilla luciferase gene is inserted within the viral genome, and a live-cell luciferase substrate allows real-time quantitative monitoring of viral replication kinetics with a high dynamic range. We demonstrate that biologically contained IAV-like particles exhibit wild-type sensitivities to approved antivirals, including oseltamivir, zanamivir, and baloxavir. Furthermore, the inability of these IAV-like particles to genetically acquire the host-encoded HA allowed us to introduce gain-of-function substitutions in the H5 HA gene that promote mammalian transmissibility. Biologically contained “transmissible” H5N1 IAV-like particles exhibited wild-type sensitivities to approved antivirals, to the fusion inhibitor S20, and to neutralization by existing H5 monoclonal and polyclonal sera. This work represents a proof of principle that biologically contained IAV systems can be used to safely conduct selected gain-of-function experiments. IMPORTANCE Understanding how animal influenza viruses can adapt to spread in humans is critical to prepare for, and prevent, new pandemics. However, working safely with pathogens that have pandemic potential requires tight regulation and the use of high-level physical and biological risk mitigation strategies to stop accidental loss of containment. Here, we used a biological containment system for influenza viruses to study strains with pandemic potential. The system relies on deletion of the essential HA gene from the viral genome and its provision by a genetically modified cell line, to which virus propagation is therefore restricted. We show that this method permits safe handling of these pathogens, including gain-of-function variants, without the risk of generating fully infectious viruses. Furthermore, we demonstrate that this system can be used to assess virus sensitivity to both approved and experimental drugs, as well as the antigenic profile of viruses, important considerations for evaluating prepandemic vaccine and antiviral strategies.


2014 ◽  
Vol 73 (2) ◽  
pp. 333-345 ◽  
Author(s):  
Iqbal Hussain ◽  
Abdul Wahid ◽  
Rizwan Rasheed ◽  
Hafiz Muhammad Akram

Abstract The greenhouse (GH) effect has emerged as a major factor in changing cropping patterns and limiting crop yields. This study was conducted to determine the comparative growth and photosynthetic responses of selected heat-resistant (cv. Sadaf) and heat-susceptible (cv. Agatti-2002) cultivars of maize to simulated GH conditions during spring and autumn seasons at seedling, silking and grain filling stages in 2007. Fifteen day old plants were shifted to plexiglass-fitted canopies to create GH conditions and data were recorded at each growth stage. The results revealed that the seasons, GH conditions and cultivars had large effects on plant growth and photosynthetic attributes. Simulated GH conditions increased the canopy temperature 4-7 °C in spring and 3-5 °C in autumn, but increased relative humidity by 2-3% in spring and 5-9% in autumn season. Although GH reduced the growth of both cultivars, shoot dry mass was reduced more in spring grown heat-susceptible maize at all growth stages. Although the cultivars showed a decrease in growth and photosynthesis, GH conditions resulted in less damage to cv. Sadaf than cv. Agatti-2002 in both seasons. Major indicators of sensitivity to GH effect were loss of chlorophyll b and carotenoids, reductions in net photosynthesis and stomatal conductance, and possibly reduced ability of Rubisco to fix CO2 in sensitive maize.


1997 ◽  
Vol 43 (4) ◽  
pp. 344-353 ◽  
Author(s):  
W. F. Mahaffee ◽  
J. W. Kloepper

The future use of genetically modified microorganisms in the environment will be dependent on the ability to assess potential or theoretical risks associated with their introduction into natural ecosystems. To assess potential risks, several ecological parameters must be examined, including the impact of the introduced genetically modified organism on the microbial communities associated with the environment into which the introduction will occur. A 2-year field study was established to examine whether the indigenous bacterial communities of the rhizosphere and endorhiza (internal root tissues) were affected differently by the introduction of an unaltered wild type and its genetically modified derivative. Treatments consisted of the wild-type strain Pseudomonas fluorescens 89B-27 and a bioluminescent derivative GEM-8 (89B-27::Tn4431). Cucumber root or seed samples were taken 0, 7, 14, 21, 35, and 70 days after planting (DAP) in 1994 and 0, 7, 14, 28, 42, and 70 DAP in 1995. Samples were processed to examine the bacterial communities of both the rhizosphere and endorhiza. Over 7200 bacterial colonies were isolated from the rhizosphere and endorhiza and identified using the Sherlock System (Microbial ID, Inc.) for fatty acid methyl ester analysis. Community structure at the genus level was assessed using genera richness and Hill's diversity numbers, N1 and N2. The aerobic–heterotrophic bacterial community structure at the genus level did not significantly vary between treatments but did differ temporally. The data indicate that the introduction of the genetically modified derivative of 89B-27 did not pose a greater environmental risk than its unaltered wild type with respect to aerobic–heterotrophic bacterial community structure.Key words: diversity, ecology, PGPR, Pseudomonas, root colonizaton, GEM.


Sign in / Sign up

Export Citation Format

Share Document