scholarly journals Interaction Between Grasses and Epichloe Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhi-Zosphere

Author(s):  
Kendall Carroll Lee ◽  
Ali Missaoui ◽  
Kishan Mahmud ◽  
Holly Presley ◽  
Marin Lonnee

Cool-season grasses are the most common forage types in livestock operations and amenities. Several of the cool-season grasses establish mutualistic associations with an endophytic fungus of the Epichloe genus. The grasses and endophytic fungi have evolved over a long period of time to form host-fungus specific relationships that confer protection for the grass against various stressors in exchange for housing and nutrients to the fungus. This review provides an overview of the mechanisms by which Epichloe endophytes and grasses interact, including molecular pathways for secondary metabolite production. It also outlines specific mechanisms by which the endophyte helps protect the plant from various abiotic and biotic stressors. Finally, the review provides information on how Epichloe infection of grass and stress affect the rhizosphere environment of the plant.

2019 ◽  
Vol 47 (4) ◽  
pp. 1100-1115 ◽  
Author(s):  
Shuiyuan CHENG ◽  
Xiaomeng LIU ◽  
Yongling LIAO ◽  
Weiwei ZHANG ◽  
Jiabao YE ◽  
...  

Ginkgo biloba is widely planted, and the extracts of leaves contain flavonoids, terpene esters and other medicinal active ingredients. WRKY proteins are a large transcription factor family in plants, which play an important role in the regulation of plant secondary metabolism and development, as well as the response to biotic and abiotic stress. In our study, we identified 40 genes with conserved WRKY motifs in the G. biloba genome and classified into groups I (groups I-N and -C), II (groups IIa, b, c, d, and e), and III, which include 12, 26, and 2 GbWRKY genes, respectively. Meanwhile, the expression patterns of 10 GbWRKY (GbWRKY2, GbWRKY3, GbWRKY5, GbWRKY7, GbWRKY11, GbWRKY15, GbWRKY23, GbWRKY29, GbWRKY31, GbWRKY32) under different tissue and abiotic stress conditions were analyzed. Under stress treatment, the expression patterns of 10 WRKY genes were changed. 10 ginkgo WRKY transcription factors were induced by ETH and SA, but there are two different induced response modes. The expression of 10 WRKY genes was inhibited under low temperature, high temperature and MeJA hormone induction. Most WRKY genes were up-regulated under the induction of high salt and ABA. GbWRKYs were differentially expressed in various tissues after abiotic stress and plant hormone treatments, thereby indicating their possible roles in biological processes and abiotic stress tolerance and adaptation. Our results provided insight into the genome-wide identification of GbWRKYs, as well as their differential responses to stresses and hormones. These data can also be utilized to identify potential molecular targets to confer tolerance to various stresses in G. biloba.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Crop Science ◽  
2020 ◽  
Author(s):  
Shivali Sharma ◽  
Rajan Sharma ◽  
Mahesh Pujar ◽  
Devvart Yadav ◽  
Yashpal Yadav ◽  
...  

2015 ◽  
Vol 39 ◽  
pp. 911-919 ◽  
Author(s):  
Mahmood-ur ANSARI ◽  
Tayyaba SHAHEEN ◽  
Shazia Anwer BUKHARI ◽  
Tayyab HUSNAIN

2014 ◽  
Vol 27 (1) ◽  
pp. 158 ◽  
Author(s):  
Ankita Sarkar ◽  
Jai Singh Patel ◽  
Sudheer Yadav ◽  
Birinchi K. Sarma ◽  
Jai Singh Srivastava ◽  
...  

Author(s):  
M Ahmad ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

The field of biotechnology has extraordinary influence on science, law, the administrative condition social insurance, and business throughout the world. As the starting of agriculture, people have been manipulating crops to improve the yield and quantity. Product yields throughout the world are essentially diminished by the activity of herbivorous insects, pathogens, and parasites. Natural environmental stresses make this circumstance significantly worse. Biotechnology can be used to increase the yield of food crops, to improve biotic and abiotic stress tolerance, to modify the traits of the plant (e.g. oil content, percentage of lignin, cell structure), to make the conversion to liquid biofuels more efficient. Various genes have been discovered for biotic and abiotic stress tolerance. The genes discovered for biotic stress are aryloxyalkanoate, dioxygenase, enzymes (aad-1), nitrilase, Cry1Ac, Cry2AB, GTgene, AFP (anti-freezing protein gene) gene, Chitinase II and III gene, and Rps1-k. The genes discovered for abiotic stress are SgNCED1, SgNCED1, USP2, HSP70, BADH, and ALO, PVNCED1, HVA1, LeNCED1. CRISPRs (clustered regularly interspaced short palindromic repeats) are the short DNA sequences present in bacteria and archaeal genomes which are now currently used by researchers to edit the genome. In different plant species (calli, leaf discs) protoplasts have been successfully used to edit their genome through CRISPR/Cas9 system. The aims of the applications are to increase resistance to abiotic or biotic stress, to engineer metabolic pathways, and to increase grain yield. Incorporation of modern biotechnology, with regular traditional practices in a sustainable way, can fulfill the objective of achieving food security for the present and as well as in future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256721
Author(s):  
Perumalla Janaki Ramayya ◽  
Vishnu Prasanth Vinukonda ◽  
Uma Maheshwar Singh ◽  
Shamshad Alam ◽  
Challa Venkateshwarlu ◽  
...  

The elite Indian rice variety, Naveen is highly susceptible to major biotic and abiotic stresses such as blast, bacterial blight (BB), gall midge (GM) and drought which limit its productivity in rainfed areas. In the present study, a combined approach of marker-assisted forward (MAFB) and back cross (MABC) breeding was followed to introgress three major genes, viz., Pi9 for blast, Xa21 for bacterial blight (BB), and Gm8 for gall midge (GM) and three major QTLs, viz., qDTY1.1, qDTY2.2 and qDTY4.1 conferring increased yield under drought in the background of Naveen. At each stage of advancement, gene-based/linked markers were used for the foreground selection of biotic and abiotic stress tolerant genes/QTLs. Intensive phenotype-based selections were performed in the field for identification of lines with high level of resistance against blast, BB, GM and drought tolerance without yield penalty under non-stress situation. A set of 8 MAFB lines and 12 MABC lines with 3 to 6 genes/QTLs and possessing resistance/tolerance against biotic stresses and reproductive stage drought stress with better yield performance compared to Naveen were developed. Lines developed through combined MAFB and MABC performed better than lines developed only through MAFB. This study exemplifies the utility of the combined approach of marker-assisted forward and backcrosses breeding for targeted improvement of multiple biotic and abiotic stress resistance in the background of popular mega varieties.


Sign in / Sign up

Export Citation Format

Share Document