scholarly journals Estimation of Fatigue Crack Growth Rate in Heat-Resistant Steel by Processing of Digital Images of Fracture Surfaces

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1776
Author(s):  
Pavlo Maruschak ◽  
Roman Vorobel ◽  
Oleksandra Student ◽  
Iryna Ivasenko ◽  
Halyna Krechkovska ◽  
...  

The micro- and macroscopic fatigue crack growth (FCG) rates of a wide class of structural materials were analyzed and it was concluded that both rates coincide either during high-temperature tests or at high stress intensity factor (SIF) values. Their coincidence requires a high level of cyclic deformation of the metal along the entire crack front as a necessary condition for the formation of fatigue striations (FS). Based on the analysis of digital fractographic images of the fatigue fracture surfaces, a method for the quantitative assessment of the spacing of FS has been developed. The method includes the detection of FS by binarization of the image based on the principle of local minima, rotation of the highlighted fragments of the image using the Hough transform, and the calculation of the distances between continuous lines. The method was tested on 34KhN3M steel in the initial state and after long-term operation (~3 × 105 h) in the rotor disk of a steam turbine at a thermal power plant (TPP). Good agreement was confirmed between FCG rates (both macro and microscopic, determined manually or using digital imaging techniques) at high SIF ranges and their noticeable discrepancy at low SIF ranges. Possible reasons for the discrepancy between the micro- and macroscopic FCG rates at low values of the SIF are analyzed. It has also been noted that FS is easier to detect on the fracture surface of degraded steel. Hydrogen embrittlement of steel during operation promotes secondary cracking along the FS, making them easier to detect and quantify. It is shown that the invariable value of the microscopic FCG rate at a low SIF range in the operated steel is lower than observable for the steel in the initial state. Secondary cracking of the operated steel may have contributed to the formation of a typical FS pattern along the entire crack front at a lower FCG rate than in unoperated steel.

2007 ◽  
Vol 348-349 ◽  
pp. 129-132 ◽  
Author(s):  
Roberto G. Citarella ◽  
Friedrich G. Buchholz

In this paper detailed results of computational 3D fatigue crack growth simulations will be presented. The simulations for the crack path assessment are based on the DBEM code BEASY, and the FEM code ADAPCRACK 3D. The specimen under investigation is a SEN-specimen subject to pure anti-plane or out-of-plane four-point shear loading. The computational 3D fracture analyses deliver variable mixed mode II and III conditions along the crack front. Special interest is taken in this mode coupling effect to be found in stress intensity factor (SIF) results along the crack front. Further interest is taken in a 3D effect which is effective in particular at and adjacent to the two crack front corner points, that is where the crack front intersects the two free side surfaces of the specimen. Exactly at these crack front corner points fatigue crack growth initiates in the experimental laboratory test specimens, and develops into two separate anti-symmetric cracks with complex shapes, somehow similar to bird wings. The computational DBEM results are found to be in good agreement with these experimental findings and with FEM results previously obtained. Consequently, also for this new case, with complex 3D crack growth behaviour of two cracks, the functionality of the proposed DBEM and FEM approaches can be stated.


Author(s):  
Eskandari Hadi ◽  
Nami Mohammad Rahim

The problem of fatigue-crack-growth in a rotating disc at different crack orientation angles is studied by using an automated numerical technique, which calculates the stress intensity factors on the crack front through the three-dimensional finite element method. Paris law is used to develop the fatigue shape of initially semi-elliptical surface crack. Because of needs for the higher mesh density and accuracy near the crack, the sub-modeling technique is used in the analysis. The distribution of SIF’s along the crack front at each step of growth is studied and the effect of crack orientation on the rate of crack-growth is investigated. The calculated SIF’s are reasonable and could be used to predict the probable crack growth rates in fracture mechanics analysis and can help engineers to consider in their designing and to prevent any unwanted failure of such components.


1987 ◽  
Vol 109 (3) ◽  
pp. 340-346 ◽  
Author(s):  
J. D. Gilman

Analysis of fatigue crack growth data for low-alloy steel shows that the influence of cyclic frequency in simulated LWR environments can be interpreted as the superposition of a time-dependent, corrosion-assisted crack growth rate upon an increment predicted by a Paris law. The time-dependent component increases monotonically to a maximum of about 6×10−5 mm/s as stress cycling becomes more aggressive. A useful measure of aggressiveness is the average time rate of crack advance due to the Paris law component alone; i.e., AΔKn × frequency. The result suggests that current ASME Code methods for flaw assessment are highly conservative in some regimes of stress and frequency, but there is a possibility of growth rates well above the ASME XI, Appendix A curves in a very low-frequency, high-stress regime. An upper bound to the time rate of corrosion-assisted crack growth in low-alloy steel is well supported by the data. The threshold conditions for the onset of this high rate are less well defined and require further investigation.


1999 ◽  
Vol 123 (3) ◽  
pp. 311-315 ◽  
Author(s):  
J. Zhao and ◽  
Y. Mutoh ◽  
T. Ogawa

The stress ratio effect on the fatigue crack growth behavior of 95Pb-5Sn solder has been investigated. It is found that both ΔJ and ΔK can correlate fatigue crack growth data well, which means that the crack growth behavior of the 95Pb-5Sn solder under the frequency of 10 Hz was dominantly cyclic dependent. The da/dN-ΔJ relationship can be expressed as: da/dN=1.1×10−11s˙ΔJ1.45. Low level of crack closure was found only in the near-threshold region. Except in this region, no crack closure was observed in the present test conditions. Both transgranular and intergranular fractures were observed on fracture surfaces: the former was dominant in most test conditions and the latter was dominant at the high stress ratio of 0.7. Striations and striation-like features were also found. Many slip bands and cavities along the grain boundary were observed on the crack wake and ahead of the crack tip in the high crack growth rate region.


Author(s):  
S. C. Mellings ◽  
J. M. W. Baynham

One of the critical requirements of fatigue crack growth simulation is calculation of the remaining life of a structure under cyclic loading. This paper presents a method which predicts the remaining fatigue life of a part, and gives information on the eventual mode of failure. The path of a growing crack needs to be understood so that informed assessment can be made of the structural consequences of eventual fast growth, and the likelihood of leakage and determination of leakage rates. For these reasons the use of standard handbook solutions for crack growth is generally not adequate, and it is essential to use the real geometry and loading. The reasons for performing such simulation work include preventive investigations performed at the design stage, forensic investigations performed after failure, and sometimes forensic investigations performed during failure-when the results provide input to the planning of remedial work. This paper focuses on the 3D simulation of cracks growing in metal structures exposed to cyclic loading, and explains the techniques which are used. The loading might arise from transients of pressure or other mechanical forces, or might be caused by thermal-stress variations. The simulation starts from an initial crack which can be of any size and orientation. The relevant geometry of the cracked component is modelled, and the loading is identified using one or more load cases together with a load spectrum which shows how the loading cycles. The effects of the crack are determined by calculating stress intensity factors at all positions along the crack front (it would be called the crack tip if the modelling was performed in 2D). The rate and direction of crack growth at each part of the crack front are calculated using one of the available crack growth laws, together with appropriate material properties. The effects of such growth are accumulated over a number of load cycles, and a new crack shape is determined. The process is repeated as required. The use of multi-axial and mixed mode techniques allows the crack to turn as a result of the applied loading, and the resulting crack path is therefore a consequence of both the detail of the geometry and the loading to which the structure is subjected. Gas or other fluid pressures acting on the crack faces can have significant impact, as can the contact between opposing crack faces when a load case causes part of the crack to close.


2011 ◽  
Vol 690 ◽  
pp. 393-396
Author(s):  
Anastasios G. Gavras ◽  
Diana A. Lados

Fatigue crack growthresistance is critical to the design and performance of structural components.This study focuses on understanding the microstructural mechanisms of fatigue crack propagation in commonly used structural materials, cast and wrought aluminum and titanium alloys, with various microstructures resulting from changes in chemistry or heat treatment (A535-F, 6061-T6, and mill- and b-annealed Ti-6Al-4V).Stress ratio effects were evaluated by conducting fatigue crack growth tests on compact tension specimens at low, intermediate, and high stress ratios, R=0.1, 0.5, and 0.7, respectively. Initial flaw size effects were also studied by performing small crack growth tests at R=0.1. Data reduction strategies compensating for closure and Kmax effects on crack growth and design curves will be presented.


Author(s):  
Kazuhisa Matsumoto ◽  
Shinichi Ohmiya ◽  
Hideki Fujii ◽  
Masaharu Hatano

To confirm a compatibility of a newly developed high strength stainless steel “NSSC STH®2” for hydrogen related applications, tensile and fatigue crack growth properties were evaluated in high pressure hydrogen gas up to 90MPa. At temperatures between −40 and 85°C, no conspicuous deterioration of tensile properties including ductility was observed even in 90 MPa hydrogen gas at −40°C while strength of STH®2 was higher than SUS316L. Although a slight drop of reduction of area was recognized in one specimen tested in 90 MPa hydrogen gas at −40°C, caused by the segregation of Mn, Ni and Cu in the laboratory manufactured 15mm-thick plate, it was considerably improved in the large mill products having less segregation. Fatigue crack growth rates of STH®2 in high pressure hydrogen gas were almost the same as that of SUS316L in air. Although fatigue crack growth rate in air was considerably decelerated and lower than that in hydrogen gas at lower ΔK region, this was probably caused by crack closure brought by oxide debris formed on the fracture surfaces near the crack tip by the strong contact of the fracture surfaces after the fatigue crack was propagated. By taking the obtained results into account, it is concluded that NSSC STH®2 has excellent properties in high pressure hydrogen gas in addition to high strength compared with standard JIS SUS316L.


Sign in / Sign up

Export Citation Format

Share Document