scholarly journals TWISTED DWARF1 regulates Arabidopsis stamen development by differential activation of ABCB-mediated auxin transport

Author(s):  
Jie Liu ◽  
Roberta Ghelli ◽  
Maura Cardarelli ◽  
Markus Geisler

Despite clear evidence that a local accumulation of auxin is likewise critical for floral organ initiation than for vegetative tissues, much less is known about the molecular key players that regulate auxin-controlled flower development. Here, by an analysis of physiological and morphological parameters and by a spatial and temporal dissection of auxin fluxes and expression of key players of ABCB-mediated auxin transport in the Arabidopsis flower, we demonstrate a crucial role for the FKBP42, TWISTED DWARF1 (TWD1), in the regulation of flower development. Our analyses revealed that TWD1 promotes flower shape and number, stamen elongation, pollen maturation, nectary functionality and seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1 as a described ABCB chaperon is a positive regulator of ABCB1 and ABCB19-mediated auxin transport. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls flower development by differential activation of ABCB-mediated auxin transport.

2021 ◽  
Author(s):  
Jie Liu ◽  
Roberta Ghelli ◽  
Maura Cardarelli ◽  
Markus Geisler

AbstractDespite clear evidence that a local accumulation of auxin is likewise critical for male fertility, much less is known about the components that regulate auxin-controlled stamen development.In this study, we analyzed physiological and morphological parameters in mutants of key players of ABCB-mediated auxin transport and spatially and temporally dissected their expression on the protein level as well as auxin fluxes in the Arabidopsis stamens. Our analyses revealed that the FKBP42, TWISTED DWARF1 (TWD1), promotes stamen elongation and, to a lesser extent, anther dehiscence, as well as pollen maturation and thus is required for seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1 - as a described ABCB chaperon - is a positive regulator of ABCB1 and ABCB19-mediated auxin transport. However, reduced stamen number was dependent on TWD1 but not on investigated ABCBs, suggesting additional actors down-stream of TWD1. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls stamen development by differential activation of ABCB-mediated auxin transport in the stamen.HighlightBy using a mix of phenotypical and imaging analyses, we here identify and functionally characterize a new master regulator of flower development.


2020 ◽  
Author(s):  
José Díaz ◽  
Elena R. Álvarez-Buylla

AbstractThe qualitative model presented in this work recovers the onset of the four fields that correspond to those of each floral organ whorl of Arabidopsis flower, suggesting a mechanism for the generation of the positional information required for the differential expression of the A, B and C identity genes according to the ABC model for organ determination during early stages of flower development. Our model integrates a previous model for the emergence of WUS pattern in the apical meristem, and shows that this pre-pattern is a necessary but not sufficient condition for the posterior information of the four fields predicted by the ABC model. Furthermore, our model predicts that LFY diffusion along the L1 layer of cells is not a necessary condition for the patterning of the floral meristem.


2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


2020 ◽  
Vol 18 (8) ◽  
pp. 1778-1795
Author(s):  
Hua‐Mao Wu ◽  
Dong‐Jiang Xie ◽  
Zuo‐Shun Tang ◽  
Dong‐Qiao Shi ◽  
Wei‐Cai Yang

2018 ◽  
Vol 19 (9) ◽  
pp. 2589 ◽  
Author(s):  
Tianqi Lyu ◽  
Jiashu Cao

Flower development is the core of higher-plant ontogenesis and is controlled by complex gene regulatory networks. Cys2/His2 zinc-finger proteins (C2H2-ZFPs) constitute one of the largest transcription factor families and are highly involved in transcriptional regulation of flowering induction, floral organ morphogenesis, and pollen and pistil maturation. Nevertheless, the molecular mechanism of C2H2-ZFPs has been gradually revealed only in recent years. During flowering induction, C2H2-ZFPs can modify the chromatin of FLOWERING LOCUS C, thereby providing additional insights into the quantification of transcriptional regulation caused by chromatin regulation. C2H2-ZFPs are involved in cell division and proliferation in floral organ development and are associated with hormonal regulation, thereby revealing how a flower is partitioned into four developmentally distinct whorls. The studies reviewed in this work integrate the information from the endogenous, hormonal, and environmental regulation of flower development. The structure of C2H2-ZFPs determines their function as transcriptional regulators. The findings indicate that C2H2-ZFPs play a crucial role in flower development. In this review, we summarize the current understanding of the structure, expression, and function of C2H2-ZFPs and discuss their molecular mechanism in flower development.


2000 ◽  
Vol 13 (10) ◽  
pp. 1121-1129 ◽  
Author(s):  
Aska Goverse ◽  
Hein Overmars ◽  
Jan Engelbertink ◽  
Arjen Schots ◽  
Jaap Bakker ◽  
...  

Various lines of evidence show that local changes in the auxin concentration are involved in the initiation and directional expansion of syncytia induced by cyst nematodes. Analysis of nematode infections on auxin-insensitive tomato and Arabidopsis mutants revealed various phenotypes ranging from complete inhibition of syncytium development to a decrease in hypertrophy and lateral root formation at the infection site. Specific activation of an auxin-responsive promoter confirmed the role of auxin and pointed at a local accumulation of auxin in developing syncytia. Disturbance of auxin gradients by inhibiting polar auxin transport with N-(1-naphthyl)phtalamic acid (NPA) resulted in abnormal feeding cells, which were characterized by extreme galling, massive disordered cell divisions in the cortex, and absence of radial expansion of the syncytium initial toward the vascular bundle. The role of auxin gradients in guiding feeding cell morphogenesis and the cross-talk between auxin and ethylene resulting in a local activation of cell wall degrading enzymes are discussed.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-498 ◽  
Author(s):  
Wei Xu ◽  
Juhong Tao ◽  
Mingjiao Chen ◽  
Ludovico Dreni ◽  
Zhijing Luo ◽  
...  

HortScience ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 664-668 ◽  
Author(s):  
Jiyu Zhang ◽  
Min Wang ◽  
Zhenghai Mo ◽  
Gang Wang ◽  
Zhongren Guo

The floral homeotic C-function gene AGAMOUS (AG) has been shown to be critical in the determination of stamen and carpel identity in Arabidopsis. In the present study, a new homologue of AGAMOUS gene from pecan [Carya illinoinensis (Wangenh.) K. Koch], denoted by CiAG, was isolated and its function was characterized. The complementary DNA (cDNA) of CiAG contains an open reading frame of 687 base pairs (bp) encoding 227 amino acids. Multiple sequence comparisons revealed that CiAG had the typical MIKC structure. Phylogenetic analysis indicated that CiAG is closely related to C-lineage AG. The expression of CiAG was highly accumulated in the reproductive tissues (staminate flowers, pistillate flowers, and fruitlets) than in vegetative tissues (leaves and current-growth branches). Arabidopsis overexpressing CiAG exhibited earlier flowering. The homeotic transformations of petals into stamen organs were observed in 35S::CiAG transgenic plants. All these results indicated that CiAG plays a key role in the process of flower development of pecan.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1644
Author(s):  
Lingtian Zeng ◽  
Jiao Zhang ◽  
Xuan Wang ◽  
Zhixiong Liu

Common buckwheat (Fagopyrum esculentum) produces distylous flowers with undifferentiated petaloid tepals, which makes it obviously different from flowers of model species. In model species Arabidopsis, APETALA3 (AP3) is expressed in petal and stamen and specifies petal and stamen identities during flower development. Combining with our previous studies, we found that small-scale gene duplication (GD) event and alternative splicing (AS) of common buckwheat AP3 orthologs resulted in FaesAP3_1, FaesAP3_2 and FaesAP3_2a. FaesAP3_2 and FaesAP3_2a were mainly expressed in the stamen of thrum and pin flower. Promoters functional analysis suggested that intense GUS staining was observed in the whole stamen in pFaesAP3_2::GUS transgenic Arabidopsis, while intense GUS staining was observed only in the filament of stamen in pFaesAP3_1::GUS transgenic Arabidopsis. These suggested that FaesAP3_1 and FaesAP3_2 had overlapping functions in specifying stamen filament identity and work together to determine normal stamen development. Additionally, FaesAP3_2 and FaesAP3_2a owned the similar ability to rescue stamen development of Arabidopsis ap3-3 mutant, although AS resulted in a frameshift mutation and consequent omission of the complete PI-derived motif and euAP3 motif of FaesAP3_2a. These suggested that the MIK region of AP3-like proteins was crucial for determining stamen identity, while the function of AP3-like proteins in specifying petal identity was gradually obtained after AP3 Orthologs acquiring a novel C-terminal euAP3 motif during the evolution of core eudicots. Our results also provide a clue to understanding the early evolution of the functional specificity of euAP3-type proteins involving in floral organ development in core eudicots, and also suggested that FaesAP3_2 holds the potential application for biotechnical engineering to develop a sterile male line of F. esculentum.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 721-743 ◽  
Author(s):  
J. L. Bowman ◽  
J. Alvarez ◽  
D. Weigel ◽  
E. M. Meyerowitz ◽  
D. R. Smyth

Mutations in the APETALA1 gene disturb two phases of flower development, flower meristem specification and floral organ specification. These effects become manifest as a partial conversion of flowers into inflorescence shoots and a disruption of sepal and petal development. We describe the changes in an allelic series of nine apetala1 mutants and show that the two functions of APETALA1 are separable. We have also studied the interaction between APETALA1 and other floral genes by examining the phenotypes of multiply mutant plants and by in situ hybridization using probes for several floral control genes. The results suggest that the products of APETALA1 and another gene, LEAFY, are required to ensure that primordia arising on the flanks of the inflorescence apex adopt a floral fate, as opposed to becoming an inflorescence shoot. APETALA1 and LEAFY have distinct as well as overlapping functions and they appear to reinforce each other's action. CAULIFLOWER is a newly discovered gene which positively regulates both APETALA1 and LEAFY expression. All functions of CAULIFLOWER are redundant with those of APETALA1. APETALA2 also has an early function in reinforcing the action of APETALA1 and LEAFY, especially if the activity of either is compromised by mutation. After the identity of a flower primordium is specified, APETALA1 interacts with APETALA2 in controlling the development of the outer two whorls of floral organs.


Sign in / Sign up

Export Citation Format

Share Document