scholarly journals Exploring the relationships between shear zones and granites: field and microstructural data for contrasting case studies of the Borborema Province (NE Brazil)

2021 ◽  
Vol 21 (2) ◽  
pp. 3-18
Author(s):  
Lauro Cézar Montefalco de Lira Santos ◽  
Luís Gustavo Ferreira Viegas

We discuss meso- and microstructural features of granites closely related to strike-slip shear zones in the Borborema Province, NE Brazil. The Riacho do Icó stock is an en-cornue intrusion aged at ca. 607 Ma. Magmatic fabric is recorded in the core of the granite, whilst increasing deformation is marked by the development of mylonitic fabrics towards the Afogados da Ingazeira shear zone, including magmatic foliation and lineation rotation. Early recrystallization of quartz and K-feldspar crystals is widespread as a fabric with well-developed granoblastic polygonal textures and lobate subgrain boundaries, heterogeneously deformed lenses and ameboid quartz ribbons, typical of igneous rocks submitted to deformation in deep crustal levels. On the other hand, the Espinho Branco-Santa Luzia leucogranitic belt is hosted along the Patos Lineament, aged between the ca. 575 – 565 Ma interval. These rocks show discordant relationships with the host migmatites and the main deformational fabric is characterized by a dominant magmatic foliation that is locally overprinted by structures that are typical of solid-state flow. Quartz melt pockets and interstitial quartz grains filling fractures in feldspar clasts are common. Such characteristics are compatible with granites that were injected in the continental crust along planar anisotropies (i.e., shear zones) formed during the late-stage partial melting events that originated the migmatites of the area. The case studies are proxies in the understanding of different episodes of magma emplacement along shear zones in this part of West Gondwana.

2021 ◽  
pp. 1-15
Author(s):  
Deepak C. Srivastava ◽  
Ajanta Goswami ◽  
Amit Sahay

Abstract Delimiting the Aravalli mountain range in the east, the Great Boundary Fault (GBF) occurs as a crustal-scale tectonic lineament in the NW Indian Shield. The structural and tectonic characteristics of the GBF are, as yet, not well-understood. We attempt to fill this gap by using a combination of satellite image processing, high-resolution outcrop mapping and structural analysis around Chittaurgarh. The study area exposes the core and damage zone of the GBF. Three successive phases of folding, F1, F2 and F3, are associated with deformation in the GBF. The large-scale structural characteristics of the GBF core are: (i) a non-coaxial refolding of F1 folds by F2 folds; and (ii) the parallelism between the GBF and F2 axial traces. In addition, numerous metre-scale ductile shear zones cut through the rocks in the GBF core. The damage zone is characterized by the large-scale F1 folds and the mesoscopic-scale strike-slip faults, thrusts and brittle-ductile shear zones. Several lines of evidence, such as the inconsistent overprinting relationship between the strike-slip faults and thrusts, the occurrence of en échelon folds and the palaeostress directions suggest that the GBF is a dextral transpression fault zone. Structural geometry and kinematic indicators imply a wrench- and contraction-dominated deformation in the core and damage zone, respectively. We infer that the GBF is a strain-partitioned dextral transpression zone.


Author(s):  
B. Zhang ◽  
S.Y. Chen ◽  
Y. Wang ◽  
P.W. Reiners ◽  
F.L. Cai ◽  
...  

During the collision of India and Eurasia, regional-scale strike-slip shear zones played a key role in accommodating lateral extrusion of blocks, block rotation, and vertical exhumation of metamorphic rocks as presented by deformation on the Ailao Shan-Red River shear zone (ARSZ) in the Eastern Himalayan Syntaxis region and western Yunnan, China. We report structural, mica Ar/Ar, apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data from the Diancangshan massif in the middle segment of the ARSZ. These structural data reveal that the massif forms a region-scale antiform, bordered by two branches of the ARSZ along its eastern and western margins. Structural evidence for partial melting in the horizontal mylonites in the gneiss core document that the gneiss experienced a horizontal shear deformation in the middle crust. Muscovite Ar/Ar ages of 36−29 Ma from the core represent cooling ages. Muscovite Ar/Ar ages of 25 and 17 Ma from greenschist-facies mylonites along the western and southern shear zones, respectively, are interpreted as recording deformation in the ARSZ. The AFT ages, ranging from 15 to 5 Ma, represent a quiescent gap with a slow cooling/exhumation in the massif. AHe results suggest that a rapid cooling and final exhumation episode of the massif could have started before 3.2 Ma, or likely ca. 5 Ma, and continue to the present. The high-temperature horizontal shearing layers of the core were first formed across the Indochina Block, locally antiformed along the tectonic boundaries, and then cooled through the mica Ar-Ar closure temperature during Eocene or early Oligocene, subsequently reworked and further exhumed by sinistral strike-slip movement along the ARSZ during the early Oligocene (ca. 29 Ma), lasting until ca. 17 Ma, then final exhumation of the massif occurred by dextral normal faulting on the Weixi-Qiaohou and Red River faults along the limbs of the ARSZ since ca. 5 Ma. The formation of the antiform could indicate local crustal thickening in an early transpressional setting corresponding to India-Asia convergence. Large-scale sinistral ductile shear along the ARSZ in the shallow crust accommodated lateral extrusion of the Indochina Block, and further contributed to the vertical exhumation of the metamorphic massif from the late Oligocene to the middle Miocene. Furthermore, the change of kinematic reversal and associated cooling episodes along the ARSZ since the middle Miocene or early Pliocene imply a tectonic transfer from strain localization along the major tectonic boundaries to continuous deformation corresponding to plateau growth and expansion.


2005 ◽  
Vol 19 (4) ◽  
pp. 445-460 ◽  
Author(s):  
Mário Neto C. Araújo ◽  
Paulo M. Vasconcelos ◽  
Fernando C. Alves da Silva ◽  
Emanuel F. Jardim de Sá ◽  
Jaziel M. Sá

2010 ◽  
Vol 178 (1-4) ◽  
pp. 1-14 ◽  
Author(s):  
Maria Helena B.M. Hollanda ◽  
Carlos J. Archanjo ◽  
Laécio C. Souza ◽  
Richard Armstrong ◽  
Paulo M. Vasconcelos

2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2021 ◽  
Vol 93 ◽  
pp. 107278
Author(s):  
Jhonattan Miranda ◽  
Christelle Navarrete ◽  
Julieta Noguez ◽  
José-Martin Molina-Espinosa ◽  
María-Soledad Ramírez-Montoya ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Roberto F. Weinberg ◽  
Fabricio A. Caxito ◽  
Leonardo B. L. Lopes ◽  
Lucas R. Tesser ◽  
...  

AbstractDispersion and deformation of cratonic fragments within orogens require weakening of the craton margins in a process of decratonization. The orogenic Borborema Province, in NE Brazil, is one of several Brasiliano/Pan-African late Neoproterozoic orogens that led to the amalgamation of Gondwana. A common feature of these orogens is that a period of extension and opening of narrow oceans preceded inversion and collision. For the case of the Borborema Province, the São Francisco Craton was pulled away from its other half, the Benino-Nigerian Shield, during an intermittent extension event between 1.0–0.92 and 0.9–0.82 Ga. This was followed by inversion of an embryonic and confined oceanic basin at ca. 0.60 Ga and transpressional orogeny from ca. 0.59 Ga onwards. Here we investigate the boundary region between the north São Francisco Craton and the Borborema Province and demonstrate how cratonic blocks became physically involved in the orogeny. We combine these results with a wide compilation of U–Pb and Nd-isotopic model ages to show that the Borborema Province consists of up to 65% of strongly sheared ancient rocks affiliated with the São Francisco/Benino-Nigerian Craton, separated by major transcurrent shear zones, with only ≈ 15% addition of juvenile material during the Neoproterozoic orogeny. This evolution is repeated across a number of Brasiliano/Pan-African orogens, with significant local variations, and indicate that extension weakened cratonic regions in a process of decratonization that prepared them for involvement in the orogenies, that led to the amalgamation of Gondwana.


Author(s):  
Taco Broerse ◽  
Nemanja Krstekanić ◽  
Cor Kasbergen ◽  
Ernst Willingshofer

Summary Particle Image Velocimetry (PIV), a method based on image cross-correlation, is widely used for obtaining velocity fields from time series of images of deforming objects. Rather than instantaneous velocities, we are interested in reconstructing cumulative deformation, and use PIV-derived incremental displacements for this purpose. Our focus is on analogue models of tectonic processes, which can accumulate large deformation. Importantly, PIV provides incremental displacements during analogue model evolution in a spatial reference (Eulerian) frame, without the need for explicit markers in a model. We integrate the displacements in a material reference (Lagrangian) frame, such that displacements can be integrated to track the spatial accumulative deformation field as a function of time. To describe cumulative, finite deformation, various strain tensors have been developed, and we discuss what strain measure best describes large shape changes, as standard infinitesimal strain tensors no longer apply for large deformation. PIV or comparable techniques have become a common method to determine strain in analogue models. However, the qualitative interpretation of observed strain has remained problematic for complex settings. Hence, PIV-derived displacements have not been fully exploited before, as methods to qualitatively characterize cumulative, large strain have been lacking. Notably, in tectonic settings, different types of deformation - extension, shortening, strike-slip - can be superimposed. We demonstrate that when shape changes are described in terms of Hencky strains, a logarithmic strain measure, finite deformation can be qualitatively described based on the relative magnitude of the two principal Hencky strains. Thereby, our method introduces a physically meaningful classification of large 2D strains. We show that our strain type classification method allows for accurate mapping of tectonic structures in analogue models of lithospheric deformation, and complements visual inspection of fault geometries. Our method can easily discern complex strike-slip shear zones, thrust faults and extensional structures and its evolution in time. Our newly developed software to compute deformation is freely available and can be used to post-process incremental displacements from PIV or similar autocorrelation methods.


This volume offers an overview of current research on grammatical number in language. The chapters Part i of the handbook present foundational notions in the study of grammatical number covering the semantic analyses of plurality, the mass–count distinction, the relationship between number and quantity expressions and the mental representation of number and individuation. The core instance of grammatical number is marking for number distinctions in nominal expressions as in English the book/the books and the chapters in Part ii, Number in the nominal domain, explore morphological, semantic, and syntactic aspects of number marking within noun phrases. The contributions examine morphological marking of number the relationship between syntax and nominal number marking, and the interactions between numeral classifiers with semantic number and number marking. They also address cases of mismatches in form and meaning with respect to number displayed by lexical plurals and collective nouns. The final chapter reviews nominal number processing from the perspective of language pathologies. While number marking on nouns has been the focus of most research on number, number distinctions can also be found in the event domain. Part iii, Number in the event domain, presents an overview of different linguistic means of expressing plurality in the event domain, covering verbal plurality marking, pluractional modifiers of the form Noun preposition Noun, frequency adjectives and dependent indefinites. Part iv provides fifteen case studies examining different aspects of grammatical number marking in a range of typologically diverse languages.


2017 ◽  
Vol 47 (1) ◽  
pp. 3-19
Author(s):  
João Gabriel Motta ◽  
Norberto Morales ◽  
Walter Malagutti Filho

ABSTRACT: The Brasília and Ribeira fold belts have been established in south-southwestern São Francisco Craton during the Brasiliano-Pan African orogeny (0.9-0.5 Ga - Tonian to Cambrian), and played an important role in West Gondwana continent assembly. The region is given by a complex regional fold and thrust belt superposed by shearing during the orogeny late times, with superposing stress fields forming a structural interference zone. These thrust sheets encompasses assemblies from lower- to upper-crust from different major tectonic blocks (Paranapanema, São Francisco), and newly created metamorphic rocks. Re-evaluation of ground gravity datasets in a geologically constrained approach including seismology (CRUST1 model) and magnetic data (EMAG2 model) unveiled details on the deep- crust settings, and the overall geometry of the structural interference zone. The Simple Bouguer Anomaly map shows heterogeneous density distribution in the area, highlighting the presence of high-density, high metamorphic grade rocks along the Alterosa suture zone in the Socorro-Guaxupé Nappe, lying amid a series of metasedimentary thrust scales in a regional nappe system with important verticalization along regional shear zones. Forward gravity modeling favors interpretations of structural interference up North into Guaxupé Nappe. Comparison to geotectonic models shows similarities with modern accretionary belts, renewing the discussion.


Sign in / Sign up

Export Citation Format

Share Document