scholarly journals Anisotropy of Mechanical Properties and Residual Stress in Additively Manufactured 316L Specimens

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7176
Author(s):  
Alexey Fedorenko ◽  
Boris Fedulov ◽  
Yulia Kuzminova ◽  
Stanislav Evlashin ◽  
Oleg Staroverov ◽  
...  

In the presented study, LPBF 316L stainless steel tensile specimens were manufactured in three different orientations for the analysis of anisotropy. The first set of specimens was built vertically on the build platform, and two other sets were oriented horizontally perpendicular to each other. Tensile test results show that mean Young’s modulus of vertically built specimens is significantly less then horizontal ones (158.7 GPa versus 198 GPa), as well as yield strength and elongation. A role of residual stress in a deviation of tensile loading diagrams is investigated as a possible explanation. Simulation of the build process on the basis of ABAQUS FEA software was used to predict residual stress in 316L cylindrical specimens. Virtual tensile test results show that residual stress affects the initial stage of the loading curve with a tendency to reduce apparent Young’s modulus, measured according to standard mechanical test methods.

2007 ◽  
Vol 345-346 ◽  
pp. 1489-1492 ◽  
Author(s):  
Hisashi Serizawa ◽  
Kazuaki Katayama ◽  
Charles Lewinsohn ◽  
Mrityunjay Singh ◽  
Hidekazu Murakawa

As examples of the most typical methods to determine the shear strength of SiC/SiC composite joints, the tensile test of lap joined composite and the asymmetrical four point bending test of butt joined composite were analyzed by using finite element method with the interface element. From the calculation results, it was revealed that the strength in the tensile test was strongly influenced by the residual stress as the increase of the joint layer thickness. In the case of asymmetrical bending test, it was found that the crack initiation point would move due to the residual stress and the strength was also affected by the joint layer thickness.


2004 ◽  
Vol 15 (12) ◽  
pp. 2389-2394 ◽  
Author(s):  
Z M Zhou ◽  
Y Zhou ◽  
C S Yang ◽  
J A Chen ◽  
G F Ding ◽  
...  

1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


2012 ◽  
Vol 18 (7-8) ◽  
pp. 945-953 ◽  
Author(s):  
Oliver Pabst ◽  
Michael Schiffer ◽  
Ernst Obermeier ◽  
Tolga Tekin ◽  
Klaus Dieter Lang ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 2310-2313 ◽  
Author(s):  
Hua Yan Yao ◽  
Zhen Hua Zhang ◽  
Zhao Hui Zhu

Water is an important factor that influences the mechanical properties of rock. Uniaxial compressive experiments have been carried out on sandstone under different cyclic times of drying and wetting. The corresponding complete stress-strain curves are obtained, and characteristics of deformation and failure are analyzed. Test results show that when sandstone samples are submitted to cyclic of drying and wetting, the uniaxial strength and Young's modulus of sandstone obviously decrease. Then, the improved Duncan constitutive model is developed, which can do better in describing sample’s deformation behaviors subject to different cyclic times of drying and wetting. Introduction


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Xiaoping Huang ◽  
Torgeir Moan

Autofrettage is a practical method for increasing the elastic carrying capacity and the fatigue life of thick-walled cylinders such as cannon and high-pressure tubular reactor. Many analytical and numerical solutions for determining the residual stress distribution in an autofrettaged tube have been reported. It is still difficult to model the Bauchinger effect, which is dependent on the prior plasticity in an analytical solution. The reduced Young’s modulus during unloading affects residual stress distribution. However, until now this effect has not been considered in any analytical model. In this paper, an autofrettage analytical solution considering Young’s modulus and the reverse yield stress dependent on the prior plasticity, based on the actual tensile-compressive curve of the material and the von Mises yield criterion, has been proposed. New model incorporates the Bauschinger effect factor and the unloading modulus variation as a function of prior plastic strain, and hence of the radius. Thereafter it assumes a fixed nonlinear unloading profile. The comparison of predicted residual stress distribution by the present solution with that of fixed unloading curve model, and test results shows that the present solution gives accurate prediction of residual stress distribution of an autofrettaged tube. This analytical procedure for the cylinder permits an excellent representation of various pressure vessel steels.


2020 ◽  
Vol 117 (6) ◽  
pp. 2764-2766 ◽  
Author(s):  
Pamela Swiatlowska ◽  
Jose L. Sanchez-Alonso ◽  
Peter T. Wright ◽  
Pavel Novak ◽  
Julia Gorelik

The field of cardiomyocyte mechanobiology is gaining significant attention, due to accumulating evidence concerning the significant role of cellular mechanical effects on the integrated function of the heart. To date, the protein titin has been demonstrated as a major contributor to the cardiomyocytes Young’s modulus (YM). The microtubular network represents another potential regulator of cardiac mechanics. However, the contribution of microtubules (MTs) to the membrane YM is still understudied and has not been interrogated in the context of myocardial infarction (MI) or mechanical loading and unloading. Using nanoscale mechanoscanning ion conductance microscopy, we demonstrate that MTs contribute to cardiomyocyte transverse YM in healthy and pathological states with different mechanical loading. Specifically, we show that posttranslational modifications of MTs have differing effects on cardiomyocyte YM: Acetylation provides flexibility, whereas detyrosination imparts rigidity. Further studies demonstrate that there is no correlation between the total protein amount of acetylated and detyrosinated MT. Yet, in the polymerized-only populations, an increased level of acetylation results in a decline of detyrosinated MTs in an MI model.


Nanoscale ◽  
2020 ◽  
Vol 12 (30) ◽  
pp. 16315-16329
Author(s):  
Pamela Swiatlowska ◽  
Jose L. Sanchez-Alonso ◽  
Catherine Mansfield ◽  
Denis Scaini ◽  
Yuri Korchev ◽  
...  

MechanoSICM is used to understand the role of angiotensin II on transverse Young's modulus at the nanoscale level.


Sign in / Sign up

Export Citation Format

Share Document