predicted binding site
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 67 (4) ◽  
pp. 1202-1215
Author(s):  
Faruk Berat Akçeşme ◽  
Nail Beşli ◽  
Jorge Peña-García ◽  
Horacio Pérez-Sánchez

Metformin, a drug frequently used by diabetic patients as the first-line treatment worldwide, is positively charged and is transported into the cell through human organic cation transporter (hOCT 1-3) proteins. We aimed to mimic the cellular uptake of metformin by hOCT1-3 with various bioinformatics methods and tools. 3D structure of OCT1-3 proteins was predicted by considering the structures and function of these proteins. We predicted functional regions (active and ligand binding sites) of OCT1-3 and performed comparative bioinformatics analysis. The predicted structure of hOCT1-3 was then analyzed in the Blind Docking server and the results were confirmed with predicted binding site residues and conserved domain regions. We simulated the OCT1-3 and metformin docking and also validated the docking procedure with other substrates of HOCT1-3 proteins. We selected the best poses of metformin docking simulations as per binding energy (–5.27 to –4.60 kcal/mol). Lastly, we validated the static description of protein-ligand (OCT-Metformin) interactions by performing molecular dynamics simulation. Eventually, we obtained stable simulation of OCT-metformin interaction.


Author(s):  
Irina A. Rodionova ◽  
Ye Gao ◽  
Anand Sastry ◽  
Reo Yoo ◽  
Dmitry A. Rodionov ◽  
...  

AbstractThe YdhB transcriptional factor, re-named here AdnB, homologous to the allantoin regulator, AllS, was shown to regulate ydhC gene expression in Escherichia coli, which is divergently transcribed from adnB, and this gene arrangement is conserved in many Protreobacteria. The predicted consensus DNA binding sequence for YdhB is also conserved in Entrobacterial genomes. RNA-seq data confirmed the activation predicted due to the binding of AdnB as shown by Chip-Exo results. Fluorescent polarization experiments revealed binding of YdhB to the predicted binding site upstream of ydhC in the presence of 0.35 mM adenine, but not in its absence. The E. coli MG1655, strain lacking the ydhB gene, showed a lower level of ydhC mRNA in cells grown in M9-glucose supplemented with 2 mM adenosine. Adenosine and adenine are products of purine metabolism and provide sources of ammonium for many organisms. They are utilized under nitrogen starvation conditions as single nitrogen sources. Deletion of either the ydhC or the ydhB gene leads to a substantially decreased growth rate for E. coli in minimal M9 medium with glycerol as the carbon source and adenosine or adenine as the single nitrogen source. The ydhC mutant showed increased resistance to Paromomycine, Sulfathiazole and Sulfamethohazole using Biolog plates. We provide evidence that YdhB, (a novel LysR family regulator) activates expression of the ydhC gene, encoding a novel adenosine/adenine transporter in E. coli. The YdhB binding consensus for different groups of Enterobacteria was predicted.


2019 ◽  
Vol 2 (2) ◽  
pp. 71-81
Author(s):  
Arthi Venkatesan ◽  
Lavanya Ravichandran ◽  
J Febin Prabhu Dass

Ebola viral disease (EVD) is a deadly infectious hemorrhagic viral fever caused by the Ebola virus with a high mortality rate. Until date, there is no effective drug or vaccination available to combat this condition. This study focuses on designing an effective antiviral drug for Ebola viral disease targeting viral protein 30 (VP30) of Ebola virus, highly required for transcription initiation. The lead molecules were screened for Lipinski rule of five, ADMET study following which molecular docking and bioactivity prediction was carried out. The compounds with the least binding energy were analyzed using interaction software. The results revealed that 6-Hydroxyluteolin and (-)-Arctigenin represent active lead compounds that inhibit the activity of VP30 protein and exhibits efficient pharmacokinetics. Both these compounds are plant-derived flavonoids and possess no known adverse effects on human health. In addition, they bind strongly to the predicted binding site centered on Lys180, suggesting that these two lead molecules can be imperative in designing a potential drug for EVD.


2018 ◽  
Vol 115 (26) ◽  
pp. E5896-E5905 ◽  
Author(s):  
Jianye Dai ◽  
Kai Liang ◽  
Shan Zhao ◽  
Wentong Jia ◽  
Yuan Liu ◽  
...  

Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicineScutellaria baicalensis, has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.


2015 ◽  
Vol 29 (12) ◽  
pp. 1759-1773 ◽  
Author(s):  
Min Pi ◽  
Karan Kapoor ◽  
Yunpeng Wu ◽  
Ruisong Ye ◽  
Susan E. Senogles ◽  
...  

Abstract G protein-coupled receptor (GPCR) family C group 6 member A (GPRC6A) is a multiligand GPCR that is activated by cations, L-amino acids, and osteocalcin. GPRC6A plays an important role in the regulation of testosterone (T) production and energy metabolism in mice. T has rapid, transcription-independent (nongenomic) effects that are mediated by a putative GPCR. We previously found that T can activate GPRC6A in vitro, but the possibility that T is a ligand for GPRC6A remains controversial. Here, we demonstrate direct T binding to GPRC6A and construct computational structural models of GPRC6A that are used to identify potential binding poses of T. Mutations of the predicted binding site residues were experimentally found to block T activation of GPRC6A, in agreement with the modeling. Using Gpr6ca−/− mice, we confirmed that loss of GPRC6A resulted in loss of T rapid signaling responses and elucidated several biological functions regulated by GPRC6A-dependent T rapid signaling, including T stimulation of insulin secretion in pancreatic islets and enzyme expression involved in the biosynthesis of T in Leydig cells. Finally, we identified a stereo-specific effect of an R-isomer of a selective androgen receptor modulator that is predicted to bind to and shown to activate GPRC6A but not androgen receptor. Together, our data show that GPRC6A directly mediates the rapid signaling response to T and uncovers previously unrecognized endocrine networks.


2015 ◽  
Vol 112 (12) ◽  
pp. 3811-3816 ◽  
Author(s):  
Cheolho Sim ◽  
David S. Kang ◽  
Sungshil Kim ◽  
Xiaodong Bai ◽  
David L. Denlinger

Insulin and juvenile hormone signaling direct entry of the mosquito Culex pipiens into its overwintering adult diapause, and these two critical signaling pathways appear to do so by converging on the regulation of forkhead transcription factor (FOXO). Diapause is a complex phenotype, and FOXO emerges as a prime candidate for activating many of the diverse physiological pathways that generate the diapause phenotype. Here, we used ChIP sequencing to identify direct targets of FOXO. The nearest gene in a 10-kb region surrounding a predicted binding site was extracted for each binding site, resulting in a dataset containing genes potentially regulated by FOXO. By selecting candidate genes based on their functional relevance to diapause, we identified five gene categories of potential interest, including stress tolerance, metabolic pathways, lifespan extension, cell cycle and growth regulation, and circadian rhythms. Twelve targets were prioritized for further analysis, 10 of which were validated by ChIP-quantitative PCR and quantitative real-time PCR. These 10 genes activated by FOXO are highly up-regulated during diapause and are thus strong candidates for implementation of the diapause syndrome.


2014 ◽  
Vol 106 (9) ◽  
pp. 1938-1949 ◽  
Author(s):  
Jérôme Hénin ◽  
Reza Salari ◽  
Sruthi Murlidaran ◽  
Grace Brannigan

2013 ◽  
Vol 81 (9) ◽  
pp. 3220-3226 ◽  
Author(s):  
Yumiko Masukagami ◽  
Kelly A. Tivendale ◽  
Karim Mardani ◽  
Idan Ben-Barak ◽  
Philip F. Markham ◽  
...  

ABSTRACTAlthough lipoproteins of mycoplasmas are thought to play a crucial role in interactions with their hosts, very few have had their biochemical function defined. The gene encoding the lipoprotein MslA inMycoplasma gallisepticumhas recently been shown to be required for virulence, but the biochemical function of this gene is not known. Although this gene has no significant sequence similarity to any gene of known function, it is located within an operon inM. gallisepticumthat contains a homolog of a gene previously shown to be a nonspecific exonuclease. We mutagenized both genes to facilitate expression inEscherichia coliand then examined the functions of the recombinant proteins. The capacity of MslA to bind polynucleotides was examined, and we found that the protein bound single- and double-stranded DNA, as well as single-stranded RNA, with a predicted binding site of greater than 1 nucleotide but less than or equal to 5 nucleotides in length. Recombinant MslA cleaved into two fragmentsin vitro, both of which were able to bind oligonucleotides. These findings suggest that the role of MslA may be to act in concert with the lipoprotein nuclease to generate nucleotides for transport into the mycoplasma cell, as the remaining genes in the operon are predicted to encode an ABC transporter.


Sign in / Sign up

Export Citation Format

Share Document