charge and radius
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 55
Author(s):  
Alexander L. Kustov ◽  
Leonid M. Kustov

The formation of complexes and disproportionation of nitrogen oxides (NO, N2O) on cationic forms of LTA, FAU, and MOR zeolites was investigated by diffuse-reflectance IR spectroscopy. N2O is adsorbed on the samples under study in the molecular form and the frequencies of the first overtone of the stretching vibrations ν10–2 and the combination bands of the stretching vibrations with other vibrational modes for N2O complexes with cationic sites in zeolites (ν30–1 + ν10–1, ν10–1 + δ0–2) are more significantly influenced by the nature of the zeolite. The presence of several IR bands in the region of 2400–2600 cm−1 (the ν10–1 + δ0–2 transitions) for different zeolite types was explained by the availability of different localization sites for cations in these zeolites. The frequencies in this region also depend on the nature of the cation (its charge and radius). The data can be explained by the specific geometry of the N2O complex formed, presumably two-point adsorption of N2O on a cation and a neighboring oxygen atom of the framework. Adsorption of CO or CH4 on the samples with preliminarily adsorbed N2O at 20–180 °C does not result in any oxidation of these molecules. NO+ and N2O3 species formed by disproportionation of NO are capable of oxidizing CO and CH4 molecules to CO2, whereas NOx is reduced simultaneously to N2 or N2O. The peculiarities in the behavior of cationic forms of different zeolites with respect to adsorbed nitrogen oxides determined by different density and localization of cations have been established.


Author(s):  
Liqiang Wang ◽  
Wenbin Cheng ◽  
Teng Gao ◽  
Yong Wang

In the southern Tibetan Plateau, leucogranites are dominantly distributed in the Himalayan orogenic belt with minor occurrences in the southern Lhasa subterrane. In this paper, we report the first Miocene Anglonggangri leucogranites in the northern Lhasa subterrane. This finding provides important constraints on both leucogranite petrogenesis and the tectono-magmatic evolution of the Lhasa terrane. The Anglonggangri leucogranites include biotite-muscovite granite and slightly younger garnet-muscovite granite and pegmatite. Zircon U-Pb and muscovite 40Ar-39Ar dating of these leucogranites yields Miocene ages of 11.1−10.2 Ma. The biotite-muscovite and garnet-muscovite granites are characterized by high SiO2 (72.3−74.4 wt%) and Al2O3 contents (14.4−15.4 wt%) and are peraluminous. The biotite-muscovite granite displays geochemical signatures with high Sr/Y (29.2−81.0) and (La/Yb)N (37.5−98.9) ratios, low Y (4.30−7.22 ppm) and Yb contents (0.26−0.47 ppm), low to moderate initial (87Sr/86Sr)i ratios (0.7085−0.7192), and moderate εNd(t) values (−10.17 to −6.94). Furthermore, they also exhibit radiogenic Pb isotope and variable zircon εHf(t) values (−9.6 to +4.4) with Proterozoic Nd (1.1−1.4 Ga) and Hf model ages (0.8−1.7 Ga). By comparison, the garnet-muscovite granite has lower CaO, MgO, TiO2, and total FeO contents and is enriched in Rb (380−466 ppm) and depleted in Sr (24.1−38.5 ppm) and Ba (30.7−58.6 ppm) and further characterized by a significant rare earth element (REE) tetrad effect and non-charge and radius-controlled (CHARAC) trace element behaviors. The garnet-muscovite granite shows a negative Eu anomaly and positive correlations among Sr and Eu, Sr and Ba, and Th and light rare earth elements (LREEs). Pegmatite comprising Nb-Ta oxides and cassiterite occurs in the garnet-muscovite granite. Geochronological and geochemical characteristics of the Anglonggangri leucogranites indicate that the magma of the biotite-muscovite granite was derived from partial melting of amphibolite lower crust contaminated with Proterozoic-Archean upper crustal materials. The garnet-muscovite granite was generated through melt extraction from the biotite-muscovite granite crystal mush. These results confirm that partial melting of the amphibolite lower crust not only occurred in the southern and central Lhasa subterranes but also in the northern Lhasa subterrane.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 37-56 ◽  
Author(s):  
Pedro Quelhas ◽  
João Mata ◽  
Ágata Alveirinho Dias

Abstract Much controversy has occurred in the past few decades regarding the nature of the sources, the petrogenetic processes, and the tectonic regime(s) of the Jurassic magmatism within the Southeast China magmatic belt. This study aims to contribute to the discussion with mineral chemistry, and whole-rock element and Sr-Nd-Hf-Pb isotopic geochemical data from granitic rocks and microgranular mafic enclaves from Macao, where two discrete groups of I-type biotite granites have been identified (referred to as Macao Group I [MGI] and Macao Group II [MGII]). It is proposed that the granitic magmas were generated by partial melting of infracrustal medium- to high-K, basaltic Paleoproterozoic to Mesoproterozoic protoliths (Nd depleted mantle model age [TDM2] = 1.7–1.6 Ga and Hf TDM2 = 1.8–1.6 Ga), triggered by underplating of hot mantle-derived magmas in an extensional setting related to the foundering of a previously flat slab (paleo–Pacific plate) beneath the SE China continent. The main differences between the two groups of Macao granites are attributed to assimilation and fractional crystallization processes, during which upper-crustal Paleozoic metasediments were variably assimilated by MGI magmas. This is evidenced by an increase in initial 87Sr/86Sr ratios with degree of evolution, presence of metasedimentary enclaves, and high percentage of zircon xenocrysts with Paleozoic ages. In addition, other processes like late-stage fluid/melt interaction and magma mixing also left some imprints on granite compositions (rare earth element tetrad effect plus non–charge-and-radius-controlled behavior of trace elements and decoupling between different isotope systems, respectively). The distribution of isotopically distinct granites in SE China reflects the nature of the two Cathaysia crustal blocks juxtaposed along the Zhenghe-Dapu fault.


2016 ◽  
Vol 4 (9) ◽  
pp. 1712-1719 ◽  
Author(s):  
Haishan Shi ◽  
Fupo He ◽  
Jiandong Ye

Comparative study of Fe3+-/Sr2+-substitution in the apatite and hydrated layers of octacalcium phosphate crystal structure with different coordination environments.


2008 ◽  
Vol 145 (3) ◽  
pp. 305-320 ◽  
Author(s):  
XIAO-HUI ZHANG ◽  
QIAN MAO ◽  
HONG-FU ZHANG ◽  
SIMON A. WILDE

AbstractThe Gangjia granite stock is a garnet-bearing muscovite leucogranitic body emplaced in Yiwulüshan in Western Liaoning Province at the eastern segment of the Yanshan orogenic belt, North China craton. The SHRIMP U–Pb zircon age is 153±5 Ma. The Gangjia granites are peraluminous with A/CNK of more than 1.14, and exhibit a tetrad effect in their REE distribution patterns, as well as non-charge-and-radius-controlled trace element behaviour. This is in contrast to the LREE-enriched patterns of the host Lüshan monzogranites. These geochemical characteristics, together with low Th/U ratios in zircon, suggest that the parental magmas for the Gangjia granites have experienced extensive magmatic differentiation, including interaction between residual melt and a coexisting high-temperature aqueous fluid. Their similar ϵNd(t), model ages, compatible age patterns and common volcanic arc signature in source materials between the Gangjia granites and the host Lüshan monzogranites indicate their comagmatic relationship. These unusual peraluminous leucogranites, coupled with the voluminous adakitic granites hosting them, represent typical post-orogenic magmatism developed under an intra-continental extensional tectonic regime. At the very end of the prolonged Jurassic magmatic evolution in Western Liaoning, extensive fractionation of most probably ferromagnesian phases and plagioclase from a calc-alkaline magma parental to the host Lüshan pluton, with overprint of the magmatic hydrothermal fluid, produced highly evolved peraluminous parental magmas for the Gangjia granites.


1956 ◽  
Vol 34 (9) ◽  
pp. 1209-1216 ◽  
Author(s):  
A. M. Couture ◽  
K. J. Laidler

The density data for aqueous solutions of electrolytes have been analyzed, and partial molal volumes at infinite dilution have been calculated. The values are shown to be additive, and a set of volumes for individual ions has been prepared, based arbitrarily on a value of zero for the hydrogen ion. It is shown that for a given value of the charge the volumes vary linearly with the cube of the ionic crystal radii, and for a given radius vary with the first power of the charge. In the case of cations the equation obeyed is[Formula: see text]while for anions[Formula: see text]If the volume of the hydrogen ion is taken as −6 ml. instead of zero the same equation is obeyed for both cations and anions, namely[Formula: see text]The empirical equations are discussed in terms of a simple model for ions in solution.


1956 ◽  
Vol 34 (8) ◽  
pp. 1107-1113 ◽  
Author(s):  
K. J. Laidler

Empirical equations recently proposed for the entropies of ions in aqueous solution involve a linear dependence on the first power of the valency z and, in some cases, an inverse dependence on the square of a modified radius. Such relationships have no fundamental validity since the entropies are related arbitrarily to a zero value for the proton. It is shown that the entropy changes for reactions of various ionic types indicate that the entropy must depend on z2, as proposed by Born on the basis of simple electrostatic theory. When the entropies of monatomic ions are related to the absolute scale, in which the proton has a value of −5.5 e.u., they are found to vary linearly with z2/ru, where ru is the univalent radius defined by Pauling. The slope is found to be close to that predicted by the Born equation, and the non-electrostatic part of the entropy is shown to correspond to the movement of the ion in a free volume of 0.73 eu. Å.


Sign in / Sign up

Export Citation Format

Share Document