scholarly journals Effect of Yb3+ doping level on the structure and spectroscopic properties of ZnO optical ceramics

2021 ◽  
Vol 2086 (1) ◽  
pp. 012015
Author(s):  
E Gorokhova ◽  
I Venevtsev ◽  
I Alekseeva ◽  
A Khubetsov ◽  
O Dymshits ◽  
...  

Abstract Zinc oxide optical ceramics with hexagonal structure doped with 0.6 –5.0 wt% Yb were fabricated by uniaxial hot pressing of commercial oxide powders at 1180 °C in vacuum. The ceramics were characterized by X-ray diffraction, SEM, EDX, X-ray and optical spectroscopy. It is shown that Yb3+ ions are distributed between C-type Yb2O3 sesquioxide crystals and ZnO grain boundaries. The Yb3+ doping of ZnO ceramics enhances the near-band-edge emission of zinc oxide. ZnO:Yb optical ceramics are promising for optoelectronic applications.

2021 ◽  
Author(s):  
Raji P ◽  
K Balachandra Kumar

Abstract Ti - doped ZnO (TixZn1-xO x= 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co - precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV-Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 ​nm to 29 ​nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples.PL spectra showed a near band edge emission and visible emission.Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.


2015 ◽  
Vol 1086 ◽  
pp. 75-78
Author(s):  
R. Kiruba ◽  
Solomon Jeevaraj A. Kingson

Monodispersed polyvinylpyrrolidone capped nanostructures of zinc oxide are prepared through chemical precipitation technique. The prepared nanostructures are characterized by XRD, SEM and Photoluminescence spectroscopic techniques. X-ray diffraction studies confirm the hexagonal structure of zinc oxide nanostructures. Nanostructures of the prepared zinc oxide are confirmed by SEM. The emission wavelength of PVP capped zinc oxide is found to be 551 nm using photoluminescence spectra.


Author(s):  
X.W. Sun ◽  
C.X. Xu ◽  
B.J. Chen ◽  
Y. Yang

Zinc oxide (ZnO) microtube has been fabricated by heating the mixture of ZnO and graphite powders in the atmosphere. The ZnO microtubes showed perfect hexagonal profiles with bell-mouth or normal hexagonal tops. Both X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) demonstrated that the product was composed of ZnO with typical hexagonal structure grown predominantly along (002) direction. The growth process was interpreted by means of vaporliquid-solid mechanism combining with the evaporation of metallic zinc.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Nola Li ◽  
Shen-Jie Wang ◽  
William E. Fenwick ◽  
Andrew Melton ◽  
Chung-Lung Huang ◽  
...  

AbstractGaN and InGaN layers were grown on annealed 20 and 50nm Al2O3/ZnO substrates by metalorganic chemical vapor deposition (MOCVD). GaN was only observed by high resolution x-ray diffraction (HRXRD) on 20 nm Al2O3/ZnO substrates. Room temperature photoluminescence (RT-PL) showed the red shift of the GaN near band-edge emission, which might be from oxygen incorporation forming a shallow donor-related level in GaN. HRXRD measurements revealed that (0002) InGaN layers were also successfully grown on 20nm Al2O3/ZnO substrates. In addition, thick InGaN layers (∼200-300nm) were successfully grown on Al2O3/ZnO and bare ZnO substrates. These results are significant as previous studies showed decomposition of the layer at InGaN thicknesses of 100nm or less.


2010 ◽  
Vol 93-94 ◽  
pp. 643-646
Author(s):  
Pusit Pookmanee ◽  
Supasima Makarunkamol ◽  
Sakchai Satienperakul ◽  
Jiraporn Kittikul ◽  
Sukon Phanichphant

Zinc oxide micropowder was synthesized by a microwave-assisted method. Zinc nitrate and ammonium hydroxide were used as the starting precursors with the mole ratio of 1:1. The white precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 9 and treated with the microwave radiation power at 1000 Watt for 2-6 min. The phase of zinc oxide micropowder was examined by X-ray diffraction (XRD). A single phase of hexagonal structure was obtained. The morphology and chemical composition of zinc oxide micropowder were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The particle was plate-like in shape with the range of particle size of 0.1-0.5 µm. The elemental composition of zinc oxide showed the characteristic X-ray energy value as follows: zinc of Lα = 1.012 keV, Kα = 8.630 keV and Kβ = 9.570 keV and oxygen of Kα = 0.525 keV, respectively.


2008 ◽  
Vol 55-57 ◽  
pp. 845-848 ◽  
Author(s):  
Pusit Pookmanee ◽  
S. Khuanphet ◽  
Sukon Phanichphant

Zinc oxide (ZnO) microparticle was synthesized by hydrothermal route using zinc acetate and ammonium hydroxide as the starting precursors in the mole ratio of 1:6. The final mixture solution was adjust with pH of 9 and treated in PTFE-line autoclave at 100 oC for 2, 4 and 6 h. The precipitate was washed with deionized water until the final pH solution of 7 and then dried at 100 oC for 4h. The phase structure was examined by X-ray diffraction (XRD). A single phase hexagonal structure was obtained without calcination step. Microstructure was investigated by scanning electron microscopy (SEM). The particle size of ZnO was in the range of 0.15-1.5 µm with irregular in shape. The chemical composition was identified by energy dispersive X-ray spectroscopy (EDXS). The elemental composition of ZnO showed the characteristic X-ray energy value as follows: zinc of Lα = 1.012 keV, Kα = 8.630 keV and Kβ = 9.570 keV and oxygen of Kα = 0.525 keV, respectively.


2018 ◽  
Vol 21 (1) ◽  
pp. 001-005 ◽  
Author(s):  
A. Dhanalakshmi ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
V. Ramadas ◽  
T. Mahalingam ◽  
...  

Zinc Oxide and Glucose capped Zinc Oxide nanoparticles have been prepared using modified chemical reaction method. X-ray diffraction analysis showed that the prepared samples possess polycrystalline nature with hexagonal structure. Surface morphology has been analyzed using scanning electron microscopy. The estimated value of band gap was found to be 3.41 and 3.87 eV for Zinc Oxide and Glucose capped ZnO respectively. Fourier Transform Infrared spectroscopic analysis has been carried out to find the chemical bond and elemental composition present in Zinc Oxide and Glucose capped Zinc Oxide.


1999 ◽  
Vol 595 ◽  
Author(s):  
K. Y. Lim ◽  
K. J. Lee ◽  
C. I. Park ◽  
K.C. Kim ◽  
S. C. Choi ◽  
...  

AbstractGaN films have been grown atop Si-terminated 3C-SiC intermediate layer on Si(111) substrates using low pressure metalorganic chemical vapor deposition (LP-MOCVD). The SiC intermediate layer was grown by chemical vapor deposition (CVD) using tetramethylsilane (TMS) as the single source precursor. The Si terminated SiC surface was obtained by immediately flow of SiH4 gas after growth of SiC film. LP-MOCVD growth of GaN on 3C-SiC/Si(111) was carried out with trimethylgallium (TMG) and NH3. Single crystalline hexagonal GaN layers can be grown on Si terminated SiC intermediate layer using an AlN or GaN buffer layer. Compared with GaN layers grown using a GaN buffer layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The GaN films were characterized by x-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). Full width at half maximum (FWHM) of double crystal x-ray diffraction (DCXD) rocking curve for GaN (0002) on 3C-SiC/Si(111) was 890 arcsec. PL near band edge emission peak position and FWHM at room temperature are 3.38 eV and 79.35 meV, respectively.


2014 ◽  
Vol 912-914 ◽  
pp. 231-234
Author(s):  
Wen Shiush Chen ◽  
Cheng Hsing Hsu ◽  
Chang Yi Peng ◽  
Ming Lang Hung ◽  
Ching Fang Tseng ◽  
...  

The compositions, electrical properties and microstructures of zinc oxide ceramics with various 46.6ZnO-20Na2O-33.4P2O5glass oxide additions prepared by solid-state method have been investigated. The structure of the materials is studied using X-Ray diffraction, and the microstructure is analyzed using scanning electron microscopy. The results indicated that the electrical properties were associated with the amount of 46.6ZnO-20Na2O-33.4P2O5glass oxide additions and the sintering temperatures. The correlation between the microstructures, oxide additions and the sintering temperature was also discussed. From the results of electrical properties measurements, zinc oxide ceramics with various 46.6ZnO-20Na2O-33.4P2O5glass oxide additions exhibits a good electrical behavior, which can be a suitable candidate material for electronic device applications.


2005 ◽  
Vol 879 ◽  
Author(s):  
Chan Woong Na ◽  
Seung Yong Bae ◽  
Jeunghee Park

AbstractTwo longitudinal superlattice structures of In2O3(ZnO)4 and In2O3(ZnO)5 nanowires were exclusively produced by thermal evaporation method. The diameter is periodically modulated in the range of 50-90 nm. They consist of one In-O layer and five (or six) layered Zn-O slabs stacked alternately perpendicular to the long axis, with a modulation period of 1.65 (or 1.9) nm. These superlattice nanowires were doped with 6-8 % Sn. X-ray diffraction pattern reveals the structural defects of wurtzite ZnO crystals due to the In/Sn incorporation. High-resolution X-ray photoelectron spectrum suggests that In/Sn withdraw the electrons from Zn, and enhance the number of dangling-bond O 2p states, resulting in the reduction of band gap. Photoluminescence exhibit the peak shift of near band edge emission to the lower energy as the In/Sn content increases.


Sign in / Sign up

Export Citation Format

Share Document