scholarly journals Enhancement of the near-band-edge electroluminescence from the active ZnO layer in the ZnO/GaN-based light emitting diodes using AlN-ZnO/ZnO/AlN-ZnO double heterojunction structure

Author(s):  
Bo-Rui Huang ◽  
Kui-Shou You ◽  
Kai-Chao Yang ◽  
Day-Shan Liu

Abstract In this work, an AlN-ZnO/ZnO/AlN-ZnO double heterojunction (DH) structure prepared using the cosputtering technology was deposited onto the p-type GaN epitaxial layer. The indiffusion of the oxygen atoms to the p-GaN epilayer was obstructed as the cosputtered AlN-ZnO film inset between n-ZnO/p-GaN interface. The near-ultraviolet (UV) emission from this ZnO/GaN-based light emitting diode (LED) was greatly improved as compared to an n-type ZnO film directly deposited onto the p-GaN epilayer. Meanwhile, the native defects in the n-ZnO layer associated with the green luminescence was less likely to form while it was sandwiched by the cosputtered AlN-ZnO film. As the thickness of the active n-ZnO layer in the DH structure reached 10 nm, the near-band-edge (NBE) emission became the predominated luminescence over the resulting LED spectrum.

2002 ◽  
Vol 722 ◽  
Author(s):  
Mee-Yi Ryu ◽  
C. Q. Chen ◽  
E. Kuokstis ◽  
J. W. Yang ◽  
G. Simin ◽  
...  

AbstractWe present the results on investigation and analysis of photoluminescence (PL) dynamics of quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by a novel pulsed metalorganic chemical vapor deposition (PMOCVD). The emission peaks in both AlInGaN epilayers and MQWs show a blueshift with increasing excitation power density. The PL emission of quaternary samples is attributed to recombination of carriers/excitons localized at band-tail states. The PL decay time increases with decreasing emission photon energy, which is a characteristic of localized carrier/exciton recombination due to alloy disorder. The obtained properties of AlInGaN materials grown by a PMOCVD are similar to those of InGaN. This indicates that the AlInGaN system is promising for ultraviolet applications such as the InGaN system for blue light emitting diode and laser diode applications.


2008 ◽  
Vol 45 (4) ◽  
pp. 25-32 ◽  
Author(s):  
L. Dimitrocenko ◽  
J. Grube ◽  
P. Kulis ◽  
G. Marcins ◽  
B. Polyakov ◽  
...  

AlGaN-InGaN-GaN Near Ultraviolet Light Emitting DiodeA 382-nm InGaN/AlGaN light-emitting diode (LED) was made on a sapphire substrate by metal-organic vapour phase deposition (MOCVD) technique. Growing of the undoped and Si-doped GaN and AlxGa1-xN monocrystalline layers with a surface roughness of < 1 nm required for making light emitting devices has been carried out. To enhance the LED emission efficiency, a modified symmetric composition of an active single quantum well (SQW) structure was proposed. In addition to the conventional p-doped AlGaN:Mg electron overflow blocking barrier, ann-doped AlGaN:Si SQW barrier layer in the structure was formed that was meant to act as an additional electron tunneling barrier.


Author(s):  
Qiaoli Niu ◽  
Hengsheng Wu ◽  
Yongtao Gu ◽  
Yanzhao Li ◽  
Wenjin Zeng ◽  
...  

2014 ◽  
Vol 93 ◽  
pp. 264-269 ◽  
Author(s):  
Henryk Teisseyre ◽  
Michal Bockowski ◽  
Toby David Young ◽  
Szymon Grzanka ◽  
Yaroslav Zhydachevskii ◽  
...  

In this communication, the use of gallium nitride doped with beryllium as an efficient converter for white light emitting diode is proposed. Until now beryllium in this material was mostly studied as a potential p-type dopant. Unfortunately, the realization of p-type conductivity in such a way seems impossible. However, due to a very intensive yellow emission, bulk crystals doped with beryllium can be used as light converters. In this communication, it is demonstrated that realisation of such diode is possible and realisation of a colour rendering index is close to that necessary for white light emission.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Junli Huang ◽  
Liya Zhou ◽  
Yuwei Lan ◽  
Fuzhong Gong ◽  
Qunliang Li ◽  
...  

AbstractEu3+-doped CaZrO3 phosphor with perovskite-type structure was synthesized by the high temperature solid-state method. The samples were characterized by X-ray diffraction, scanning electron microscopy, fluorescence spectrophotometer and UV-vis spectrophotometer, respectively. XRD analysis showed that the formation of CaZrO3 was at the calcinations temperature of 1400°C. The average diameter of CaZrO3 with 4 mol% doped-Eu3+ was 2µm. The PL spectra demonstrated that CaZrO3:Eu3+ phosphor could be excited effectively in the near ultraviolet light region (397 nm) and emitted strong red-emission lines at 616 nm corresponding to the forced electric dipole 5 D 0 → 7 F 2 transitions of Eu3+. Meanwhile, the light-emitting diode was fabricated with the Ca0.96ZrO3:Eu0.043+ phosphor, which can efficiently absorb ∼ 400 nm irradiation and emit red light. Therefore Ca0.96ZrO3:Eu0.043+ may have applications for a near ultraviolet InGaN chip-based white light-emitting diode.


2009 ◽  
Vol 1192 ◽  
Author(s):  
Jesse J Cole ◽  
Heiko Jacobs

AbstractWe report a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium doped GaN substrates to define a narrow sub-100nm width nucleation region. ZnO is synthesized in the defined areas by a hydrothermal technique using zinc acetate and hexamethylenetetramine precursors. Nucleation is followed by lateral epitaxial overgrowth producing single crystal disks of ZnO. The process provides control over the dimension and location of the ZnO crystals. The quality of the patterned ZnO is high; the commonly observed defect related emission in the electroluminescence spectra is suppressed and a single near-band-edge UV peak is observed. Transfer printing of the ZnO microcrystals onto a flexible substrate is also demonstrated in the context of transparent flexible electronics.


Sign in / Sign up

Export Citation Format

Share Document