Journal of Amino Acids
Latest Publications


TOTAL DOCUMENTS

32
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

Published By Hindawi Publishing Corporation (Sage-Hindawi Access To Research)

2090-0112

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Noriyuki Nagahara

Thiol enzymes have single- or double-catalytic site cysteine residues and are redox active. Oxidoreductases and isomerases contain double-catalytic site cysteine residues, which are oxidized to a disulfide via a sulfenyl intermediate and reduced to a thiol or a thiolate. The redox changes of these enzymes are involved in their catalytic processes. On the other hand, transferases, and also some phosphatases and hydrolases, have a single-catalytic site cysteine residue. The cysteines are redox active, but their sulfenyl forms, which are inactive, are not well explained biologically. In particular, oxidized forms of sulfurtransferases, such as mercaptopyruvate sulfurtransferase and thiosulfate sulfurtransferase, are not reduced by reduced glutathione but by reduced thioredoxin. This paper focuses on why the catalytic site cysteine of sulfurtransferase is redox active.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ronald E. Viola ◽  
Christopher R. Faehnle ◽  
Julio Blanco ◽  
Roger A. Moore ◽  
Xuying Liu ◽  
...  

The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
V. Kh. Khavinson ◽  
V. O. Polyakova ◽  
N. S. Linkova ◽  
A. V. Dudkov ◽  
I. M. Kvetnoy

The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala) and T-38 (Lys-Glu-Asp). Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-1 ◽  
Author(s):  
Nabil Miled ◽  
Moncef Nasri ◽  
Hideki Kishimura ◽  
Faouzi Ben Rebah
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Elaine C. Gavioli ◽  
Pedro R. T. Romão

Nociceptin/orphanin FQ (N/OFQ) is a seventeen-amino acid peptide that is the endogenous ligand of a G-protein-coupled receptor (NOP). Various immune cells express the precursor protein and secrete N/OFQ as well as display binding sites for this peptide. The functional capacity of NOP receptor was demonstrated in vitro and in vivo studies by the ability of N/OFQ to induce chemotaxis of immune cells, to regulate the expression of cytokines and other inflammatory mediators, and to control cellular and humoral immunity. In this context, N/OFQ could modulate the outcome of some inflammatory diseases, such as sepsis and autoimmune pathologies by mechanisms not clearly elucidated yet. In fact, human body fluid revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's diagnose. Preclinical studies pointed to the blockade of NOP receptor signaling as successful in treating these experimental conditions. Further preclinical and clinical studies are required to investigate the potential of NOP ligands in treating inflammatory diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Tomohisa Ogawa ◽  
Mizuki Watanabe ◽  
Takako Naganuma ◽  
Koji Muramoto

Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families.


2011 ◽  
Vol 2011 ◽  
pp. 1-1 ◽  
Author(s):  
Shandar Ahmad ◽  
Jung-Ying Wang ◽  
Zulfiqar Ahmad ◽  
Faizan Ahmad

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Toshio Takahashi ◽  
Masayuki Hatta

The peptide-signaling molecules (<50 amino acid residues) occur in a wide variety of invertebrate and vertebrate organisms, playing pivotal roles in physiological, endocrine, and developmental processes. While some of these peptides display similar structures in mammals and invertebrates, others differ with respect to their structure and function in a species-specific manner. Such a conservation of basic structure and function implies that many peptide-signaling molecules arose very early in the evolutionary history of some taxa, while species-specific characteristics led us to suggest that they also acquire the ability to evolve in response to specific environmental conditions. In this paper, we describe GLWamide-family peptides that function as signaling molecules in the process of muscle contraction, metamorphosis, and settlement in cnidarians. The peptides are produced by neurons and are therefore referred to as neuropeptides. We discuss the importance of the neuropeptides in both developmental and physiological processes in a subset of hydrozoans, as well as the potential use as a seed compound in drug development and aspects related to the protection of corals.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yumi Takemoto

When injected into specific rat brain regions, the neurotransmitter candidate L-proline produces various cardiovascular changes through ionotropic excitatory amino acid receptors. The present study used an immunohistochemical double-labeling approach to determine whether intracisternally injected L-proline in freely moving rats, which increases blood pressure, activates hypothalamic vasopressin-expressing neurons and ventral medullary tyrosine-hydroxylase- (TH-) containing neurons. Following injection of L-proline, the number of activated hypothalamic neurons that coexpressed vasopressin and c-Fos was much greater in the supraoptic nucleus (SON) than in the paraventricular nucleus (PVN) of rats with increased blood pressure. The number of activated TH-containing neurons was significantly greater following L-proline treatment than following control injections of artificial cerebrospinal fluid (ACSF). These results clearly demonstrate that intracisternally injected L-proline activates hypothalamic supraoptic, but not paraventricular, vasopressin-expressing neurons and medullary TH-containing (A1/C1) neurons in freely moving rats.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Rafik Balti ◽  
Ali Bougatef ◽  
Nedra El Hadj Ali ◽  
Naourez Ktari ◽  
Kemel Jellouli ◽  
...  

Antioxidative activities and biochemical properties of protein hydrolysates prepared from cuttlefish (Sepia officinalis) using Alcalase 2.4 L and Bacillus licheniformis NH1 proteases with different degrees of hydrolysis (DH) were determined. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range. The antioxidant activities of cuttlefish protein hydrolysates (CPHs) increase with increasing DH. In addition, all CPHs exhibited antioxidative activity in a concentration-dependent manner. NH1-CPHs generally showed greater antioxidative activity than Alcalase protein hydrolysates (P<0.05) as indicated by the higher 1,1-diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity and ferrous chelating activity. Both Alcalase and NH1 protein hydrolysates were able to retard lipid peroxidation and β-carotene-linoleic acid oxidation. Alcalase-CPH (DH = 12.5%) and NH1-CPH (DH = 15%) contained 75.36% and 80.11% protein, respectively, with histidine and arginine as the major amino acids, followed by glutamic acid/glutamine, serine, lysine, and leucine. In addition, CPHs have a high percentage of essential amino acids made up 48.85% and 50.04%. Cuttlefish muscle protein hydrolysates had a high nutritional value and could be used as supplement to poorly balanced dietary proteins.


Sign in / Sign up

Export Citation Format

Share Document