scholarly journals Diversified Carbohydrate-Binding Lectins from Marine Resources

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Tomohisa Ogawa ◽  
Mizuki Watanabe ◽  
Takako Naganuma ◽  
Koji Muramoto

Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families.

2014 ◽  
Vol 155 (51) ◽  
pp. 2021-2027
Author(s):  
István Télessy

Reviewing the literature of nutrition therapy one can conclude that during the last decade the pharmacological action of several nutrients has been demonstrated. However, research activity is still at the beginning and it could be verified in a restricted number of nutrients only that in which conditions (illnesses), dose and duration we can expect therapeutic effect in addition to nutrition. The examples of glutamine, arginine, taurine, leucine, ω-3 fatty acids, however, support the possibility that complex reactions and treatment results observed in certain patients are not purely due to nutritional support but the consequence of additional pharmacological action as well. Evaluation of results of therapeutic intervention is especially difficult because in the everyday practice physicians try to use several therapeutic modalities that can be beneficial for the patient. Therefore, retrospective separation of beneficial components of the therapeutic agents is almost impossible. Only well designed, randomized and multicentric studies can verify specific therapeutic action of certain ingredients ie. nutrients. Orv. Hetil., 2014, 155(51), 2021–2027.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianke Su ◽  
Xinyuan Hu ◽  
Hua Huang ◽  
Yu Guo ◽  
Qiuling Song

Abstract2-Fluoroindoles as an important structural scaffold are widely existing in many bioactive or therapeutic agents. Despite their potential usefulness, efficient constructions of 2-fluoroindole derivatives are very sparce. The development of straightforward synthetic approaches to access 2-fluoroindoles is highly desirable for studying their fundamental properties and applications. Herein, we report an efficient and general strategy for the construction of 2-fluoroindoles in which a wide variety of 2-fluoroindoles were accessed with high efficiency and chemoselectivity. Instead of starting from indole skeletons, our strategy constructs indole scaffolds alongside the incorporation of fluorine atom on C2 position in a formal [4+1] cyclization from readily accessible ortho-vinylanilines and difluorocarbene. In our protocol, commercially accessible halodifluoroalkylative reagents provide one carbon and one fluorine atom by cleaving one C-N tertiary bond and forming one C-N bond and one C-C double bond with ortho-vinylanilines. Downstream transformations on 2-fluoroindoles lead to various valuable bioactive molecules which demonstrated significant synthetic advantages over previous reports. And mechanistic studies suggest that the reaction undergoes a cascade difluorocarbene-trapping and intramolecular Michael addition reaction followed by Csp3-F bond cleavage.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3175
Author(s):  
Mariana Barbosa ◽  
Hélvio Simões ◽  
Duarte Miguel F. Prazeres

Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.


Author(s):  
Zahra Asefy ◽  
Asghar Tanomand ◽  
Sirus Hoseinnejhad ◽  
Zaker Ceferov ◽  
Ebrahim Abbasi Oshaghi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document