scholarly journals Star‐Polymer‐DNA Gels Showing Highly Predictable and Tunable Mechanical Responses

2022 ◽  
pp. 2108818
Author(s):  
Masashi Ohira ◽  
Takuya Katashima ◽  
Mitsuru Naito ◽  
Daisuke Aoki ◽  
Yusuke Yoshikawa ◽  
...  
2021 ◽  
Author(s):  
Masashi Ohira ◽  
Takuya Katashima ◽  
Mitsuru Naito ◽  
Daisuke Aoki ◽  
Yusuke Yoshikawa ◽  
...  

Dynamically crosslinked gels are appealing materials for applications that require time-dependent mechanical responses. DNA duplexes are ideal crosslinkers for building such gels because of their excellent sequence addressability and flexible tunability in bond energy. However, the mechanical responses of most DNA gels are complicated and unpredictable despite the high potential of DNA. Here, we demonstrate a DNA gel with a highly homogeneous gel network and well-predictable mechanical behaviors by using a pair of star-polymer-DNA precursors with presimulated DNA sequences showing the two-state transition. The melting curve analysis of the DNA gels reveals the good correspondence between the thermodynamic potentials of the DNA crosslinkers and the presimulated values by DNA calculators. Stress-relaxation tests and dissociation kinetics measurements show that the macroscopic relaxation time of the DNA gels is approximately equal to the lifetime of the DNA crosslinkers over four orders of magnitude from 0.1-2,000 sec. Furthermore, a series of durability tests find the DNA gels are hysteresis-less and self-healable after the applications of repeated temperature and mechanical stimuli. These results demonstrate the great potential of star-polymer-DNA precursors for building gels with predictable and tunable viscoelastic properties, suitable for applications such as stress-response extracellular matrices, injectable solids, and soft robotics.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 99
Author(s):  
Konstantinos N. Raftopoulos ◽  
Edyta Hebda ◽  
Anna Grzybowska ◽  
Panagiotis A. Klonos ◽  
Apostolos Kyritsis ◽  
...  

A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.


2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


Sign in / Sign up

Export Citation Format

Share Document