scholarly journals Electronic Textile Sensors for Decoding Vital Body Signals: State‐of‐the‐Art Review on Characterizations and Recommendations

2022 ◽  
pp. 2100223
Author(s):  
Ikra Iftekhar Shuvo ◽  
Aastha Shah ◽  
Canan Dagdeviren
Small ◽  
2019 ◽  
Vol 15 (31) ◽  
pp. 1970161 ◽  
Author(s):  
Ronghui Wu ◽  
Liyun Ma ◽  
Chen Hou ◽  
Zhaohui Meng ◽  
Wenxi Guo ◽  
...  

2016 ◽  
Vol 87 (12) ◽  
pp. 1445-1456 ◽  
Author(s):  
Jung-Sim Roh

This study developed and tested the development of an all-fabric interconnection and one-stop production process for electronic textiles that are combined with electronic technologies on textiles. Primarily, this is a one-stop production method for electronic textiles consisting of multilayer structured fabrics for implementation of electronic functions in which (1) precise circuit patterns are formed, (2) conductive materials or conductive circuits on each fabric layer are electrically connected, and (3) individual fabric layers are fixed to the base layer through embroidery, while fabric layers are layered one by one using a commercial computer numeric control embroidery machine. Since the multilayer fabric structured electronic textiles constructed have different layers of conductive materials connected electrically, quickly durably, and reliably through embroidery, (1) the electrically connected parts are not likely to be broken by external forces, (2) all parts to be connected to external devices are formed on one piece of fabric so that the work to connect the textiles to an external device is simple, and (3) workability and productivity are improved so that manufacturing costs can be reduced and the textiles can be mass produced. Therefore, this one-stop method using commercial machinery has great potential as a highly useful technology that can be implemented on an industrial scale.


2012 ◽  
Vol 80 ◽  
pp. 142-151 ◽  
Author(s):  
Patrycja Bosowski ◽  
Christian Husemann ◽  
Till Quadflieg ◽  
Stefan Jockenhövel ◽  
Thomas Gries

Technical textiles are used primarily for their technical functionality in many different industries. For monitoring the functionality of textiles it is possible to integrate sensors into the textile. Since textiles are made of fibres, yarns, two-or three dimensional structures the sensor systems should accordingly be designed as a part of them. Smart textiles are concerned with textile based sensors integrated mechanically and structurally to a textile. The state of the art in developing textile based sensors extends from sensor fibres to over coated yarns and textiles but without using standardized tools. The development of a textile sensor and its interpretation on a specific application has been associated with many investigations into combination of different conductive materials, what is a lengthy and costly developing process. Knowledge has already been generated on textile sensors, which now requires an appropriate classification and structure. A classified catalogue which allows a direct selection of textile based sensor modules on the basis of measured values. The catalogue´s structure follows, apart from the VDI- guideline 2222, of which complex coherences can be arranged and a clear representation can be found. Setting standards in the field of smart textiles helps companies to produce more smart products.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 10
Author(s):  
Giorgia Petri ◽  
Berit Greinke

This paper presents preliminary results from a study of pleated electronic textile (e-textile) sensors, focusing on prototyping and measuring electrical resistance of three knitted sensors. This work is part of a larger research project, investigating the interaction between body and e-textiles with a three-dimensional structure for creative performance applications. First, electrical properties of the pleated textile sensors were determined. Sensors were measured in a purpose-built low-cost recording device, which was set up to record electrical resistance, taken from the fabric while it was folded and unfolded. Different modes of connecting the samples to the microcontroller were also tested. Each sensor was tested three times with three different stretch lengths. The results show that one of the most significant factors to use knitted pleats as an input is the combination of yarns combined with the tension of the knitting machine.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Carl E. Henderson

Over the past few years it has become apparent in our multi-user facility that the computer system and software supplied in 1985 with our CAMECA CAMEBAX-MICRO electron microprobe analyzer has the greatest potential for improvement and updating of any component of the instrument. While the standard CAMECA software running on a DEC PDP-11/23+ computer under the RSX-11M operating system can perform almost any task required of the instrument, the commands are not always intuitive and can be difficult to remember for the casual user (of which our laboratory has many). Given the widespread and growing use of other microcomputers (such as PC’s and Macintoshes) by users of the microprobe, the PDP has become the “oddball” and has also fallen behind the state-of-the-art in terms of processing speed and disk storage capabilities. Upgrade paths within products available from DEC are considered to be too expensive for the benefits received. After using a Macintosh for other tasks in the laboratory, such as instrument use and billing records, word processing, and graphics display, its unique and “friendly” user interface suggested an easier-to-use system for computer control of the electron microprobe automation. Specifically a Macintosh IIx was chosen for its capacity for third-party add-on cards used in instrument control.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


Sign in / Sign up

Export Citation Format

Share Document