scholarly journals Multimodal imaging reveals human cholinergic system functional and structural integrity in vivo

2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Milan Nemy ◽  
Michel Grothe ◽  
Jose Barroso ◽  
Stefan J. Teipel ◽  
Eric Westman ◽  
...  
2012 ◽  
Vol 135 (2) ◽  
pp. 391-401 ◽  
Author(s):  
Victor C. K. Lo ◽  
Margarete K. Akens ◽  
Sara Moore ◽  
Albert J. M. Yee ◽  
Brian C. Wilson ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


2006 ◽  
Vol 14 (7S_Part_2) ◽  
pp. P150-P151
Author(s):  
Michel J. Grothe ◽  
Martijn Muller ◽  
Elvira Álvarez ◽  
Nicolaas I. Bohnen ◽  
Stefan J. Teipel

2018 ◽  
Vol 19 (12) ◽  
pp. 3702 ◽  
Author(s):  
Grazia Femminella ◽  
Tony Thayanandan ◽  
Valeria Calsolaro ◽  
Klara Komici ◽  
Giuseppe Rengo ◽  
...  

Alzheimer’s disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer’s, as they provide an in vivo window to the pathological processes occurring in Alzheimer’s brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer’s disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer’s research and clinical practice.


1999 ◽  
Vol 19 (1) ◽  
pp. 86-98 ◽  
Author(s):  
David E. Sterner ◽  
Patrick A. Grant ◽  
Shannon M. Roberts ◽  
Laura J. Duggan ◽  
Rimma Belotserkovskaya ◽  
...  

ABSTRACT SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Δ spt3Δand gcn5Δ spt8Δ) causing loss of a member of each of the moderate classes have severe phenotypes, similar tospt7Δ, spt20Δ, or ada1Δmutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


2017 ◽  
Vol 23 (3) ◽  
pp. 931-944 ◽  
Author(s):  
Gil Leurquin-Sterk ◽  
Jenny Ceccarini ◽  
Cleo Lina Crunelle ◽  
Akila Weerasekera ◽  
Bart de Laat ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuqing Niu ◽  
Massimiliano Galluzzi ◽  
Ming Fu ◽  
Jinhua Hu ◽  
Huimin Xia

AbstractOne of the main challenges of tissue-engineered vascular prostheses is restenosis due to intimal hyperplasia. The aim of this study is to develop a material for scaffolds able to support cell growth while tolerating physiological conditions and maintaining the patency of carotid artery model. Tubular hyaluronic acid (HA)-functionalized collagen nanofibrous composite scaffolds were prepared by sequential electrospinning method. The tubular composite scaffold has well-controlled biophysical and biochemical signals, providing a good matrix for the adhesion and proliferation of vascular endothelial cells (ECs), but resisting to platelets adhesion when exposed to blood. Carotid artery replacement experiment from 6-week rabbits showed that the HA/collagen nanofibrous composite scaffold grafts with endothelialization on the luminal surface could maintain vascular patency. At retrieval, the composite scaffold maintained good structural integrity and had comparable mechanical strength as the native artery. This study indicating that electrospun scaffolds combined with cells may become an alternative to prosthetic grafts for vascular reconstruction. Graphical Abstract


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Peijun Tang ◽  
Mitchell A. Kirby ◽  
Nhan Le ◽  
Yuandong Li ◽  
Nicole Zeinstra ◽  
...  

AbstractCollagen organization plays an important role in maintaining structural integrity and determining tissue function. Polarization-sensitive optical coherence tomography (PSOCT) is a promising noninvasive three-dimensional imaging tool for mapping collagen organization in vivo. While PSOCT systems with multiple polarization inputs have demonstrated the ability to visualize depth-resolved collagen organization, systems, which use a single input polarization state have not yet demonstrated sufficient reconstruction quality. Herein we describe a PSOCT based polarization state transmission model that reveals the depth-dependent polarization state evolution of light backscattered within a birefringent sample. Based on this model, we propose a polarization state tracing method that relies on a discrete differential geometric analysis of the evolution of the polarization state in depth along the Poincare sphere for depth-resolved birefringent imaging using only one single input polarization state. We demonstrate the ability of this method to visualize depth-resolved myocardial architecture in both healthy and infarcted rodent hearts (ex vivo) and collagen structures responsible for skin tension lines at various anatomical locations on the face of a healthy human volunteer (in vivo).


Sign in / Sign up

Export Citation Format

Share Document