Calotropis procera mediated one pot green synthesis of Cupric oxide nanoparticles (CuO-NPs) for adsorptive removal of Cr(VI) from aqueous solutions

2017 ◽  
Vol 31 (12) ◽  
pp. e3849 ◽  
Author(s):  
Shikha Dubey ◽  
Yogesh Chandra Sharma
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Khwaja Salahuddin Siddiqi ◽  
M. Rashid ◽  
A. Rahman ◽  
Tajuddin ◽  
Azamal Husen ◽  
...  

Abstract Background Biogenic fabrication of nanoparticles from naturally occurring biomaterials involves plants, herbs, bacteria and fungi using water as neutral solvent, while chemical synthesis involves hazardous chemicals and leaves unwanted byproduct which unnecessarily pollute the environment. In order to prevent atmospheric pollution a safe, clean and green strategy for the synthesis of cupric oxide nanoparticles from aqueous leaf extract of Diospyros montana has been employed. D. montana of Ebenaceae family is a poisonous tropical plant which grows wild in Asia. Its extract is commonly known as fish poison. The rate of formation of NPs from plant extract is thought to be facile and rapid relative to those formed by fungi and bacteria, but it depends on the concentration of reducing chemicals available in the extract. We report, in this communication, a benign method of biogenic synthesis of cupric oxide nanoparticles (CuO-NPs) from leaf extract of D. montana and their characterization by UV–visible, FTIR, SEM, TEM, DLS, SAED and EDX analyses. Their antimicrobial activity against seven Gram-positive and four Gram-negative bacteria has been screened. Photocatalytic degradation of methylene blue by ascorbic acid as reducing agent and cupric oxide nanoparticles as catalyst has been done under sunlight. Results Cupric oxide nanoparticles of varying size starting from 5.9 to 21.8 nm have been fabricated from aqueous leaf extract of D. montana at room temperature. The pure extract absorbs at 273 nm while CuO-NPs exhibit a broad peak at 320 nm. FTIR spectrum of the leaf extract shows the presence of a double quinonoid molecule. There are three types of CuO-NPs with different hydrodynamic radii. Their average hydrodynamic radii fall between 495 ± 346 nm. SEM and TEM images show spherical shaped CuO-NPs of different size. SAED suggests crystalline nature of CuO-NPs. They are highly polydispersed in solution. EDX analysis reveals the presence of Ca, C, O, Na and Si besides copper. Oxygen content is over 50% by mass. Reduction of methylene blue dye (MB) by ascorbic acid as reducing agent, in presence of CuO-NPs as catalyst, has been achieved in 90 s at room temperature while their reduction by ascorbic acid alone takes more than 10 min. Antibacterial activity of CuO-NPs against seven Gram-positive (Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Streptococcus viridans, Staphylococcus epidermidis, Corynebacterium xerosis and Bacillus cereus) and four Gram-negative bacterial strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris) has been investigated. The results indicated that NPs are highly effective against growth inhibition of Gram-positive bacteria than Gram-negative bacteria. Copper oxide nanoparticles are even more toxic than the standard antibiotic, norfloxacin. Conclusion In this project cupric oxide NPs of 5.9–21.8 nm have been fabricated from aqueous leaf extract of D. montana. It is most inexpensive and easy process to fabricate NPs from plant material because no toxic chemicals are used. Since CuO-NPs are toxic to several Gram-positive and Gram-negative bacterial strains, attempt may be made to use them as antibacterial agent to protect food, vegetable and crops. Also, the reduction of methylene blue dye by ascorbic acid as reducing agent in presence of CuO NPs as catalyst has been done very efficiently at a rapid rate which prompts us to use them as catalyst in the reduction of dyes, other toxic materials and industrial effluents. Further investigation of other beneficial properties of CuO-NPs can also be explored.


2015 ◽  
Vol 27 (7) ◽  
pp. 2523-2526 ◽  
Author(s):  
N. Anandhavalli ◽  
Bency Mol ◽  
S. Manikandan ◽  
N. Anusha ◽  
V. Ponnusami ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Mahmoud Abudayyak ◽  
Elif Guzel ◽  
Gül Özhan

Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods: After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results: The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion: CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


Sign in / Sign up

Export Citation Format

Share Document