Structure and properties of UHMWPE fiber/carbon fiber hybrid composites

2006 ◽  
Vol 101 (3) ◽  
pp. 1880-1884 ◽  
Author(s):  
Sheng-Hua Lu ◽  
Guo-Zheng Liang ◽  
Zhi-Wei Zhou ◽  
Fang Li
2021 ◽  
Author(s):  
DANDAN ZHANG ◽  
XINGKANG SHE ◽  
YIPENG HE ◽  
WESLEY A. CHAPKIN, ◽  
VI T. BREGMAN ◽  
...  

Carbon fiber reinforced polymer (CFRP) composites are lightweight materials with superior strength but are expensive due to the increased cost of carbon fibers (CFs). The addition of carbon nanotubes (CNTs) to polymer nanocomposites are becoming an excellent alternative to CF due to their unique combination of electrical, thermal, and mechanical properties. With the application of an electric field across the CNT/polymer mixture before curing, CNTs will not only be aligned along the electric field direction, but also form networks after reaching to a certain degree of alignment. In this study, an alternating current (AC) electric field was applied continuously to CNT/CF/Epoxy hybrid composites before curing. By cutting off the applied voltage when the monitored electric current increased, the degree of networking of CNTs between two CF tows was controlled. The relative electric field strength around the end of conductive carbon fiber tows in the epoxy matrix was modeled using COMSOL Multiphysics. It increased after applying AC electric field parallel to the CF tows, thereby increasing the alignment degree of CNTs and building a network to bridge the CF tows. The preliminary results indicate that the microhardness and tensile modulus between two CF tows are increased due to the networking of CNTs in this area. The fracture surface of the specimens after tensile tests were characterized to reveal more details of the microstructure.


2018 ◽  
Vol 21 (6) ◽  
pp. 1800565 ◽  
Author(s):  
Jan Rehra ◽  
Benedikt Hannemann ◽  
Sebastian Schmeer ◽  
Joachim Hausmann ◽  
Ulf P. Breuer

BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Djamila Kada ◽  
Sébastien Migneault ◽  
Ghezalla Tabak ◽  
Ahmed Koubaa

1984 ◽  
Vol 21 (03) ◽  
pp. 234-241
Author(s):  
Mamdouh M. Salama

The design of a mooring system for tension leg platforms (TLPs) becomes more complicated as water depth increases. The use of steel mooring lines requires complicated tensioning, handling, and flotation systems. This paper discusses the basic design requirements for the TLP mooring system and identifies several advanced fiber-reinforced lightweight materials as alternatives to steel. High-modulus carbon fiber/KevlarcircleR fiber hybrid composites and Kevlar ropes appear to offer the optimum mooring systems for TLPs used in the development of large and medium-size reservoirs, respectively.


Author(s):  
Ankit Dhar Dubey ◽  
Jogendra Kumar ◽  
Shivi Kesarwani ◽  
Rajesh Kumar Verma

This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.


Author(s):  
S. S. Pesetskii ◽  
S. P. Bogdanovich ◽  
V. N. Aderikha

Results of the studies of technology, structural features and properties of polymer/clay nanocomposites (n-PCM) prepared by melt compounding of thermoplastic polymers are systematized. Special attention is given to the analysis of the effect of nanoclays modification with surfactants on properties of nanocomposites and preparation features of nanomaterials based on polar, non-polar thermoplastics and polymer blends. Effect of technological factors and special compounding regimes in the technology of n-PCM with advanced technical characteristics is considered. Results of the original studies of the structure and properties of the hybrid composites, filled by high modulus fibers in addition to nanoclays, are presented.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1395 ◽  
Author(s):  
Liwei Wu ◽  
Wei Wang ◽  
Qian Jiang ◽  
Chunjie Xiang ◽  
Ching-Wen Lou

The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution.


2020 ◽  
pp. 073168442095739
Author(s):  
Christopher Meninno ◽  
Vijaya Chalivendra ◽  
Yong Kim

An experimental study was conducted to investigate the electro-flexure response of conductive natural fiber hybrid laminate composites. The composites were composed of laminates of jute and flax fibers, and the composites were subjected to flexural loading for the electrical and bending response. Multi-walled carbon nanotubes were shear mixed and ultrasonicated into the epoxy matrix. Short carbon fibers were reinforced in-between the laminates using “wet flocking” technique. To measure the electrical response under flexural loading, a four-point circumferential probe method was used. A parametric study was conducted to investigate flexural performance and damage sensing by varying carbon fiber lengths (150 and 350 µm) and the carbon fiber densities (500, 1000, 1500, and 2000 fibers/mm2). The addition of carbon fibers decreased the flexural strength for most of the cases, however increased the flexural strain at break for all composites of carbon fiber length of 150 µm. During the nonlinear deformation, the composites of carbon fiber length of 150 µm demonstrated a linear increase in resistance; however, that of carbon fiber length of 350 µm showed increasing slope of resistance. Overall, the composites of carbon fiber length of 350 µm showed lower resistance change at break compared to that of carbon fiber length of 150 µm.


Sign in / Sign up

Export Citation Format

Share Document