Use of antioxidant nanoparticles to reduce oxidative stress in blood storage

Author(s):  
Saeid Barzegar ◽  
Amir Asri Kojabad ◽  
Rima Manafi Shabestari ◽  
Mehdi Barati ◽  
Mohammad Reza Rezvany ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 760-760
Author(s):  
Karen S deWolski ◽  
Hayley R Waterman ◽  
Peter C Thomson ◽  
James D Gorham ◽  
Matthew S Ranson ◽  
...  

Abstract Background: There is substantial donor-to-donor variability in the post-transfusion survival of stored human RBCs. RBCs from different strains of inbred mice also store differently; RBCs from C57BL/6 (B6) mice store well, whereas RBCs from FVB/NJ (FVB) mice store poorly, as defined as 24-hr post-transfusion RBC recoveries (24hr-recoveries). We hypothesized that observed differences in RBC storage between inbred mouse strains are heritable and can be mapped using mouse genetic tools. Methods: B6 and FVB mice were crossed to generate F1 mice, which were then intercrossed to generate 156 F2 animals. RBCs from single donor mice were stored for 7 days, followed by transfusion into B6xFVB F1 recipients that were transgenic for GFP, which is expressed in essentially 100% of F1 RBCs. 24hr-recoveries were measured by bleeding recipients 24 hours post-transfusion and enumerating non-fluorescent donor RBCs. The use of F1 recipients avoided crossing allo-antigenic barriers. Prior to transfusion, a sample of each donor RBC unit was frozen at -80oC; all frozen samples were subjected to LC-MS/MS to generate an untargeted metabolomics profile. DNA from each mouse was applied to a 1,414 SNP Illumina BeadChip. Quantitative Trait Loci (QTL) analysis was performed for 24hr-recoveries and also for each LC-MS/MS analyte identified, by means of fitting a linear model at each SNP, and adjusting for the number of tests using a false discovery rate (FDR) procedure. For each LC-MS/MS analyte, correlation coefficients were calculated to 24-hr recoveries. Correlations of LC-MS/MS metabolites to 24hr-recoveries were combined with QTL mapping and referenced to known metabolic pathways to generate a blood storage metabolomics profiles associated with an RBC storage phenotype and linked to genotype. Additional genetic mapping resolution was obtained by backcrossing F2 mice with poor storage to B6 parents, and selecting poor-storing progeny to breed for each next generation. Results: 24hr-recoveries exhibited a Gaussian distribution in F2 mice. LC-MS/MS quantified 554 analytes in each stored RBC sample. QTL analysis of the 24hr-recoveries using 813 informative SNPs identified a significant QTL (maximum peak p=2.09x10-31), that we have termed Rbcstor1, spanning a ~149 Mb interval on chromosome 1 (rs13475827 to rs13476300). Fine mapping using backcrossed populations refined Rbcstor1 to a 9.5 Mb interval containing 64 genes. Filtering for coding genes harboring nonsynonymous B6-FVB SNPs identified 5 genes (Gli2, Steap3, Ccdc93, Rab3gap1, Tli). Steap3 is a functional enzyme in erythroid cells, in which it is the primary ferrireductase converting Fe3+ to Fe2+, both mitigating oxidative stress as well as allowing transferrin-dependent iron uptake. Steap3 harbors two FVB-B6 non-synonymous SNPs (p.A350V and p.N455S). Metabolomics analysis revealed that oxidized products of lipid metabolism strongly correlated with post-transfusion RBC survival, including the bioactive lipids Leukotriene B4 (r=0.71, p=1.7x10-25) and Prostaglandin E2 (r=0.81, p=2.6x10-37). In addition, a wide variety of dicarboxylic fatty acids (e.g. dodecanedioate (r=-0.81, p=1.1x10-44) and octanedioate (r=-0.85, p=3.4x10-53)) strongly correlated with RBC storage. Based upon additional QTL analysis of products of lipid peroxidation, a significant QTL was identified, which we have termed Rbcstormet1. Rbcstormet1 overlaps extensively with Rbcstor1. Conclusion: We have identified Rbcstor1 on chromosome 1 as a QTL strongly associated with 24hr-recoveries. Within this region, Steap3 is a strong candidate gene. Steap3 has been previously implicated in erythroid phenotypes: mice lacking Steap3 are profoundly anemic, and a human family carrying a STEAP3 nonsense mutation has been reported to exhibit a congenital hypochromic anemia. However, to the best of our knowledge, Steap3 has no known function in mature RBC biology or RBC storage. We hypothesize that the FVB Steap3 allele is a hypomorphic variant, which adversely impacts RBC storage biology by decreasing the ability of RBCs to handle oxidative stress, leading to lipid peroxidation that generates inflammatory lipids, lysolipids, and dicarboxylic acids. In addition to identifying a novel genetic locus associated with 24hr-recoveries of stored RBCs, these studies suggest that polymorphisms in Steap3 or in related proteins could contribute to human blood donor variability. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Rejane S. Sousa ◽  
Antonio H. H. Minervino ◽  
Francisco Leonardo C. Oliveira ◽  
Carolina Akiko Sato C. Araújo ◽  
Frederico Augusto M. L. Rodrigues ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
R. Vani ◽  
R. Soumya ◽  
H. Carl ◽  
V. A. Chandni ◽  
K. Neha ◽  
...  

There is a dire necessity to improve blood storage and prolong shelf-life of blood. Very few studies have focused on oxidative stress (OS) in blood and its influence on plasma with storage. This study attempts to (i) elucidate the continuous changes occurring in plasma during storage through oxidant levels and antioxidant status and (ii) evaluate the influence of vitamin C (VC) as an additive during blood storage. Blood was drawn from maleWistarrats and stored for 25 days at 4°C. Blood samples were divided into control and experimental groups. Plasma was isolated every 5 days and the OS markers, antioxidant enzymes, lipid peroxidation, and protein oxidation products, were studied. Catalase activity increased in all groups with storage. Lipid peroxidation decreased in VC (10) but was maintained in VC (30) and VC (60). Although there were variations in all groups, carbonyls were maintained towards the end of storage. Advanced oxidation protein products (AOPP) increased in VC (30) and were maintained in VC (10) and VC (60). Sulfhydryls were maintained in all groups. Vitamin C could not sufficiently attenuate OS and hence, this opens the possibilities for further studies on vitamin C in combination with other antioxidants, in storage solutions.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
S ALEYNIK ◽  
M ALEYNIK ◽  
C LIEBER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document