scholarly journals Prospects of Vitamin C as an Additive in Plasma of Stored Blood

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
R. Vani ◽  
R. Soumya ◽  
H. Carl ◽  
V. A. Chandni ◽  
K. Neha ◽  
...  

There is a dire necessity to improve blood storage and prolong shelf-life of blood. Very few studies have focused on oxidative stress (OS) in blood and its influence on plasma with storage. This study attempts to (i) elucidate the continuous changes occurring in plasma during storage through oxidant levels and antioxidant status and (ii) evaluate the influence of vitamin C (VC) as an additive during blood storage. Blood was drawn from maleWistarrats and stored for 25 days at 4°C. Blood samples were divided into control and experimental groups. Plasma was isolated every 5 days and the OS markers, antioxidant enzymes, lipid peroxidation, and protein oxidation products, were studied. Catalase activity increased in all groups with storage. Lipid peroxidation decreased in VC (10) but was maintained in VC (30) and VC (60). Although there were variations in all groups, carbonyls were maintained towards the end of storage. Advanced oxidation protein products (AOPP) increased in VC (30) and were maintained in VC (10) and VC (60). Sulfhydryls were maintained in all groups. Vitamin C could not sufficiently attenuate OS and hence, this opens the possibilities for further studies on vitamin C in combination with other antioxidants, in storage solutions.

2018 ◽  
Vol 38 (11) ◽  
pp. 2070-2079 ◽  
Author(s):  
Nayanna B.S. Fonseca ◽  
Jucélio S. Gameleira ◽  
Jerson M. Cavalcante ◽  
Francisco L.C. Oliveira ◽  
Clara S. Mori ◽  
...  

ABSTRACT: Blood transfusion is a therapeutic procedure of great importance for veterinary medicine, in spite of only few studies in the literature on hemotherapy in goats. We aimed to evaluate the biochemical, blood gas, oxidative stress and lipid peroxidation of goats submitted to homologous transfusion of fresh whole blood or stored for 15 and 35 days. Eighteen adult male goats were submitted to a single phlebotomy to remove 30% of the blood volume, and we transfused 20mL/kg of whole blood stored in CPDA-1 bags according to the experimental group, being: G0 composed goats who received fresh blood, G15 and G35 goats that received blood stored for 15 and 35 days, respectively. For the biochemical evaluation, blood gas, oxidative stress and lipid peroxidation, blood samples were collected at the following moments: before the induction of anemia (TC0); 6 hours after phlebotomy and before transfusion (TC1); 1, 6, 12, 24 and 96 hours after transfusion (T1, T6, T12, T24 and T96 respectively); 8, 16 and 32 days after transfusion (T8d, T16d and T32d respectively). Before transfusion, blood samples were also withdrawn from the bags for the same analyzes. Statistical analyzes were performed in the statistical program GRAPHPAD PRISM 5.0, adopting a significance level of 5%. The bags of blood stored for 15 and 35 days showed more biochemical changes, blood gas, oxidative stress and lipid peroxidation than fresh blood bags. As for the biochemical analysis, after the transfusion was observed an increase of the total protein, albumin, glucose and creatine kinase in the 3 groups, and elevation of total bilirubin, direct bilirubin, and urea in G15 and G35. The changes observed in the blood gas analysis had no clinical significance, as they were within the reference values for the species. The goats that received stored blood showed disorder in their antioxidant system through alteration of the SOD activity. In the analysis of lipid peroxidation no difference between the groups for the concentration of malondialdehyde was found. Thus, it can be concluded that transfusion of whole fresh stored blood in goats did not compromise the blood gases, lipid peroxidation and liver and renal functions of the transfused animals. In addition, the method was proved to be efficient to restore, among other components, the total protein and albumin. The transfusion, as performed in this study, proved to be safe for used in the clinical practice of goats.


2009 ◽  
Vol 78 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Mine Erişir ◽  
Fulya Benzer ◽  
Fatih M. Kandemir

Pregnancy is a condition that favours oxidative stress. The aim of this study was to evaluate the oxidant and antioxidant status by measuring glutathione peroxidase (GSH-Px), catalase (CAT) activities and malondialdehyde (MDA) and glutathione (GSH) concentrations before and during pregnancy in ewes. Twelve healthy female and two healthy male Awassi sheep, aged 4-5 years, weighing approximately 50 - 55 kg each, were used in the study. The ewes’ blood samples were taken before synchronization and during pregnancy (on 25th days of each month of pregnancy). Plasma MDA concentrations in the 2nd and 3rd months of pregnancy in ewes were lower than in the 1st, 4th, 5th months of pregnancy and in the non-pregnant ewes. GSH concentrations and GSH-Px activities during pregnancy were increased (P < 0.01). GSH concentrations and GSH-Px activities were the highest in the 2nd and 3rd months of pregnancy. CAT activities were decreased after the 1st month of pregnancy in ewes (P < 0.001). They were the lowest in the 2nd and 3rd months of pregnancy. The findings of our study show decreased CAT activities and elevated GSH concentrations and GSH-Px activities after the 1st month of pregnancy in ewes. These changes in the indicators under study may indicate a predisposition to oxidative stress in the 2nd and 3rd month of pregnancy in ewes.


1970 ◽  
Vol 9 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Naushin Haider ◽  
Mohammad Safiqul Islam ◽  
Abdullah Al Maruf ◽  
Md Hasanuzzaman Shohag ◽  
Rubaiya Ali ◽  
...  

Vitiligo is a common pigmentary disorder characterized by depigmented patches or macules caused by the destruction of melanocytes. The pathogenetic mechanisms involved in vitiligo have not been completely clarified. Oxidative stress and reduced circulating antioxidants could be important phenomena in the pathophysiology of vitiligo. We measured serum malondialdehyde (MDA) as an indicator of oxidative stress and serum zinc and vitamin C to check antioxidant status in thirty Vitiligo patients. Thirty healthy control subjects were also recruited by matching the socio-demographic status to that of the patients. Blood samples were analyzed for determining the serum levels of Zn (by atomic absorption spectroscopy), Vitamin C and MDA (by UV-VIS spectroscopy). Serum level of MDA increased in vitiligo patients significantly (p < 0.05) in the present study, where as serum level of Zn increased and serum Vit-C decreased in patients compared to control but the changes were not statistically significant (p > 0.05). Our study reveals the presence of an imbalance in the oxidant/antioxidant system in vitiligo patients which supports a free radical-mediated damage in the pathogenesis of vitiligo. Key words: Vitiligo; Oxidative stress; Antioxidant status; MDA; Vitamin C; Zinc DOI: http://dx.doi.org/10.3329/dujps.v9i2.7894 Dhaka Univ. J. Pharm. Sci. 9(2): 103-108, 2010 (December)  


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2016 ◽  
pp. 75-78
Author(s):  
Liliia Babynets ◽  
Tetiana Maevska

The study proved that patients with combined progress of osteoarthritis and chronic pancreatitis have reliable top-level activation of lipid peroxidation in terms of malonyc aldehyde and tissue destruction in terms of oxyproline, weakening of the antioxidant level (in terms of superoxide dismutase and SH-groups) and activation parameters of catalase and ceruloplasmin (p<0,05). The authentic predictority of patients biological age, duration of combined clinical courses, the functional capacity of the pancreas in terms of fecal α-elastase, structural state by ultrasound criteria for progression effects of oxidative stress, accumulation oxyproline activation parameters catalase and ceruloplasmin, which statistically was reflected by the presence of mainly moderate of significant correlations between these groups of indicators have been identified.


2015 ◽  
Vol 8 (1) ◽  
pp. 8-14
Author(s):  
Olufunsho Awodele ◽  
Temidayo Popoola ◽  
Kunle Rotimi ◽  
Victor Ikumawoyi ◽  
Wahab Okunowo

AbstractHIV/AIDS related mortality has been dramatically reduced by the advent of antiretroviral therapy (ART). However, ART presents with associated adverse effects. One of such adverse effects is hepatotoxicity observed with nevirapine (NVP) containing ART. Since previous studies showed that NVP hepatotoxicity may be due to oxidative stress via generation of oxidative radicals, this study sought to evaluate the protective effects of antioxidants in alleviating NVP induced hepatotoxicity. Rats were divided into 6 groups with 8 animals per group and received doses of the antioxidants jobelyn (10.7 mg/kg/day), vitamin C (8 mg/kg/day), vitamin E (5 mg/kg/day) and/or NVP (6 mg/kg/day) for 60 days. The animals were sacrificed on day 61 by cervical dislocation, blood samples were collected for biochemical and hematological examination. The liver of the sacrificed animals was weighed and subjected to histopathological examination. There was a statistically significant (p<0.05) elevation in MDA level observed in the NVP group as compared with control. The results further showed non-significant decreases in the levels of MDA in the NVP plus antioxidant groups, except vitamin C, when compared with the NVP alone group. Vitamin E and Vitamin E plus C treated groups showed significantly (p<0.05) higher levels of SOD, CAT and GSH. The results also showed statistically significantly (p<0.05) lower levels of ALT and AST in the antioxidant treated groups There was an observed significantly (p<0.05) higher level of TP and urea in the antioxidant treated rats. A significantly (p<0.05) higher white blood cell count was observed in the antioxidant groups. Histopathological assessment of the liver extracted from the rats showed no visible pathology across the groups. Observations from this study suggest a potentially positive modulatory effect of antioxidants and may be indicative for the inclusion of antioxidants in nevirapine containing ART.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 760-760
Author(s):  
Karen S deWolski ◽  
Hayley R Waterman ◽  
Peter C Thomson ◽  
James D Gorham ◽  
Matthew S Ranson ◽  
...  

Abstract Background: There is substantial donor-to-donor variability in the post-transfusion survival of stored human RBCs. RBCs from different strains of inbred mice also store differently; RBCs from C57BL/6 (B6) mice store well, whereas RBCs from FVB/NJ (FVB) mice store poorly, as defined as 24-hr post-transfusion RBC recoveries (24hr-recoveries). We hypothesized that observed differences in RBC storage between inbred mouse strains are heritable and can be mapped using mouse genetic tools. Methods: B6 and FVB mice were crossed to generate F1 mice, which were then intercrossed to generate 156 F2 animals. RBCs from single donor mice were stored for 7 days, followed by transfusion into B6xFVB F1 recipients that were transgenic for GFP, which is expressed in essentially 100% of F1 RBCs. 24hr-recoveries were measured by bleeding recipients 24 hours post-transfusion and enumerating non-fluorescent donor RBCs. The use of F1 recipients avoided crossing allo-antigenic barriers. Prior to transfusion, a sample of each donor RBC unit was frozen at -80oC; all frozen samples were subjected to LC-MS/MS to generate an untargeted metabolomics profile. DNA from each mouse was applied to a 1,414 SNP Illumina BeadChip. Quantitative Trait Loci (QTL) analysis was performed for 24hr-recoveries and also for each LC-MS/MS analyte identified, by means of fitting a linear model at each SNP, and adjusting for the number of tests using a false discovery rate (FDR) procedure. For each LC-MS/MS analyte, correlation coefficients were calculated to 24-hr recoveries. Correlations of LC-MS/MS metabolites to 24hr-recoveries were combined with QTL mapping and referenced to known metabolic pathways to generate a blood storage metabolomics profiles associated with an RBC storage phenotype and linked to genotype. Additional genetic mapping resolution was obtained by backcrossing F2 mice with poor storage to B6 parents, and selecting poor-storing progeny to breed for each next generation. Results: 24hr-recoveries exhibited a Gaussian distribution in F2 mice. LC-MS/MS quantified 554 analytes in each stored RBC sample. QTL analysis of the 24hr-recoveries using 813 informative SNPs identified a significant QTL (maximum peak p=2.09x10-31), that we have termed Rbcstor1, spanning a ~149 Mb interval on chromosome 1 (rs13475827 to rs13476300). Fine mapping using backcrossed populations refined Rbcstor1 to a 9.5 Mb interval containing 64 genes. Filtering for coding genes harboring nonsynonymous B6-FVB SNPs identified 5 genes (Gli2, Steap3, Ccdc93, Rab3gap1, Tli). Steap3 is a functional enzyme in erythroid cells, in which it is the primary ferrireductase converting Fe3+ to Fe2+, both mitigating oxidative stress as well as allowing transferrin-dependent iron uptake. Steap3 harbors two FVB-B6 non-synonymous SNPs (p.A350V and p.N455S). Metabolomics analysis revealed that oxidized products of lipid metabolism strongly correlated with post-transfusion RBC survival, including the bioactive lipids Leukotriene B4 (r=0.71, p=1.7x10-25) and Prostaglandin E2 (r=0.81, p=2.6x10-37). In addition, a wide variety of dicarboxylic fatty acids (e.g. dodecanedioate (r=-0.81, p=1.1x10-44) and octanedioate (r=-0.85, p=3.4x10-53)) strongly correlated with RBC storage. Based upon additional QTL analysis of products of lipid peroxidation, a significant QTL was identified, which we have termed Rbcstormet1. Rbcstormet1 overlaps extensively with Rbcstor1. Conclusion: We have identified Rbcstor1 on chromosome 1 as a QTL strongly associated with 24hr-recoveries. Within this region, Steap3 is a strong candidate gene. Steap3 has been previously implicated in erythroid phenotypes: mice lacking Steap3 are profoundly anemic, and a human family carrying a STEAP3 nonsense mutation has been reported to exhibit a congenital hypochromic anemia. However, to the best of our knowledge, Steap3 has no known function in mature RBC biology or RBC storage. We hypothesize that the FVB Steap3 allele is a hypomorphic variant, which adversely impacts RBC storage biology by decreasing the ability of RBCs to handle oxidative stress, leading to lipid peroxidation that generates inflammatory lipids, lysolipids, and dicarboxylic acids. In addition to identifying a novel genetic locus associated with 24hr-recoveries of stored RBCs, these studies suggest that polymorphisms in Steap3 or in related proteins could contribute to human blood donor variability. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ljiljana M. Popovic ◽  
Nebojsa R. Mitic ◽  
Dijana Miric ◽  
Boban Bisevac ◽  
Mirjana Miric ◽  
...  

Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.


Sign in / Sign up

Export Citation Format

Share Document