Steap3 Is a Novel Candidate Gene for Regulating the RBC Blood Storage Lesion By Mitigating Peroxidation of Membrane Lipids in a Mouse Model

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 760-760
Author(s):  
Karen S deWolski ◽  
Hayley R Waterman ◽  
Peter C Thomson ◽  
James D Gorham ◽  
Matthew S Ranson ◽  
...  

Abstract Background: There is substantial donor-to-donor variability in the post-transfusion survival of stored human RBCs. RBCs from different strains of inbred mice also store differently; RBCs from C57BL/6 (B6) mice store well, whereas RBCs from FVB/NJ (FVB) mice store poorly, as defined as 24-hr post-transfusion RBC recoveries (24hr-recoveries). We hypothesized that observed differences in RBC storage between inbred mouse strains are heritable and can be mapped using mouse genetic tools. Methods: B6 and FVB mice were crossed to generate F1 mice, which were then intercrossed to generate 156 F2 animals. RBCs from single donor mice were stored for 7 days, followed by transfusion into B6xFVB F1 recipients that were transgenic for GFP, which is expressed in essentially 100% of F1 RBCs. 24hr-recoveries were measured by bleeding recipients 24 hours post-transfusion and enumerating non-fluorescent donor RBCs. The use of F1 recipients avoided crossing allo-antigenic barriers. Prior to transfusion, a sample of each donor RBC unit was frozen at -80oC; all frozen samples were subjected to LC-MS/MS to generate an untargeted metabolomics profile. DNA from each mouse was applied to a 1,414 SNP Illumina BeadChip. Quantitative Trait Loci (QTL) analysis was performed for 24hr-recoveries and also for each LC-MS/MS analyte identified, by means of fitting a linear model at each SNP, and adjusting for the number of tests using a false discovery rate (FDR) procedure. For each LC-MS/MS analyte, correlation coefficients were calculated to 24-hr recoveries. Correlations of LC-MS/MS metabolites to 24hr-recoveries were combined with QTL mapping and referenced to known metabolic pathways to generate a blood storage metabolomics profiles associated with an RBC storage phenotype and linked to genotype. Additional genetic mapping resolution was obtained by backcrossing F2 mice with poor storage to B6 parents, and selecting poor-storing progeny to breed for each next generation. Results: 24hr-recoveries exhibited a Gaussian distribution in F2 mice. LC-MS/MS quantified 554 analytes in each stored RBC sample. QTL analysis of the 24hr-recoveries using 813 informative SNPs identified a significant QTL (maximum peak p=2.09x10-31), that we have termed Rbcstor1, spanning a ~149 Mb interval on chromosome 1 (rs13475827 to rs13476300). Fine mapping using backcrossed populations refined Rbcstor1 to a 9.5 Mb interval containing 64 genes. Filtering for coding genes harboring nonsynonymous B6-FVB SNPs identified 5 genes (Gli2, Steap3, Ccdc93, Rab3gap1, Tli). Steap3 is a functional enzyme in erythroid cells, in which it is the primary ferrireductase converting Fe3+ to Fe2+, both mitigating oxidative stress as well as allowing transferrin-dependent iron uptake. Steap3 harbors two FVB-B6 non-synonymous SNPs (p.A350V and p.N455S). Metabolomics analysis revealed that oxidized products of lipid metabolism strongly correlated with post-transfusion RBC survival, including the bioactive lipids Leukotriene B4 (r=0.71, p=1.7x10-25) and Prostaglandin E2 (r=0.81, p=2.6x10-37). In addition, a wide variety of dicarboxylic fatty acids (e.g. dodecanedioate (r=-0.81, p=1.1x10-44) and octanedioate (r=-0.85, p=3.4x10-53)) strongly correlated with RBC storage. Based upon additional QTL analysis of products of lipid peroxidation, a significant QTL was identified, which we have termed Rbcstormet1. Rbcstormet1 overlaps extensively with Rbcstor1. Conclusion: We have identified Rbcstor1 on chromosome 1 as a QTL strongly associated with 24hr-recoveries. Within this region, Steap3 is a strong candidate gene. Steap3 has been previously implicated in erythroid phenotypes: mice lacking Steap3 are profoundly anemic, and a human family carrying a STEAP3 nonsense mutation has been reported to exhibit a congenital hypochromic anemia. However, to the best of our knowledge, Steap3 has no known function in mature RBC biology or RBC storage. We hypothesize that the FVB Steap3 allele is a hypomorphic variant, which adversely impacts RBC storage biology by decreasing the ability of RBCs to handle oxidative stress, leading to lipid peroxidation that generates inflammatory lipids, lysolipids, and dicarboxylic acids. In addition to identifying a novel genetic locus associated with 24hr-recoveries of stored RBCs, these studies suggest that polymorphisms in Steap3 or in related proteins could contribute to human blood donor variability. Disclosures No relevant conflicts of interest to declare.

Antioxidants ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 102 ◽  
Author(s):  
Giuseppina Barrera ◽  
Stefania Pizzimenti ◽  
Martina Daga ◽  
Chiara Dianzani ◽  
Alessia Arcaro ◽  
...  

Among the various mechanisms involved in aging, it was proposed long ago that a prominent role is played by oxidative stress. A major way by which the latter can provoke structural damage to biological macromolecules, such as DNA, lipids, and proteins, is by fueling the peroxidation of membrane lipids, leading to the production of several reactive aldehydes. Lipid peroxidation-derived aldehydes can not only modify biological macromolecules, by forming covalent electrophilic addition products with them, but also act as second messengers of oxidative stress, having relatively extended lifespans. Their effects might be further enhanced with aging, as their concentrations in cells and biological fluids increase with age. Since the involvement and the role of lipid peroxidation-derived aldehydes, particularly of 4-hydroxynonenal (HNE), in neurodegenerations, inflammation, and cancer, has been discussed in several excellent recent reviews, in the present one we focus on the involvement of reactive aldehydes in other age-related disorders: osteopenia, sarcopenia, immunosenescence and myelodysplastic syndromes. In these aging-related disorders, characterized by increases of oxidative stress, both HNE and malondialdehyde (MDA) play important pathogenic roles. These aldehydes, and HNE in particular, can form adducts with circulating or cellular proteins of critical functional importance, such as the proteins involved in apoptosis in muscle cells, thus leading to their functional decay and acceleration of their molecular turnover and functionality. We suggest that a major fraction of the toxic effects observed in age-related disorders could depend on the formation of aldehyde-protein adducts. New redox proteomic approaches, pinpointing the modifications of distinct cell proteins by the aldehydes generated in the course of oxidative stress, should be extended to these age-associated disorders, to pave the way to targeted therapeutic strategies, aiming to alleviate the burden of morbidity and mortality associated with these disturbances.


2010 ◽  
Vol 62 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Ivana Trbojevic ◽  
Branka Ognjanovic ◽  
Natasa Djordjevic ◽  
Snezana Markovic ◽  
A.S. Stajn ◽  
...  

The role of oxidative stress in cisplatin (CP) toxicity and its prevention by pretreatment with selenium (Se) was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p.) alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio (GSH RI), resulting in increased lipid peroxidation (LPO) in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats.


2022 ◽  
Vol 12 ◽  
Author(s):  
Silvia Lucena Lage ◽  
Eduardo Pinheiro Amaral ◽  
Kerry L. Hilligan ◽  
Elizabeth Laidlaw ◽  
Adam Rupert ◽  
...  

The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14highCD16− monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively. Those cells also showed aberrant levels of mitochondrial superoxide and lipid peroxidation, both hallmarks of the oxidative stress response, which strongly correlated with caspase-1 activity. In addition, we found that NLRP3 inflammasome-derived IL-1β secretion by SARS-CoV-2-exposed monocytes in vitro was partially dependent on lipid peroxidation. Importantly, altered inflammasome and stress responses persisted after short-term patient recovery. Collectively, our findings suggest oxidative stress/NLRP3 signaling pathway as a potential target for host-directed therapy to mitigate early COVID-19 hyperinflammation and also its long-term outcomes.


2021 ◽  
Author(s):  
Silvia Lucena Lage ◽  
Eduardo Pinheiro Amaral ◽  
kerry L. Hilligan ◽  
Elizabeth Laidlaw ◽  
Adam Rupert ◽  
...  

The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14highCD16- monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively. Those cells also showed aberrant levels of mitochondrial superoxide (MitoSOX) and lipid peroxidation, both hallmarks of the oxidative stress response, which strongly correlated with caspase-1 activity. In addition, we found that NLRP3 inflammasome-derived IL-1β secretion by SARS-CoV-2-exposed monocytes in vitro was partially dependent on lipid peroxidation. Importantly, altered inflammasome and stress responses persisted after short-term patient recovery. Collectively, our findings suggest oxidative stress/NLRP3 signaling pathway as a potential target for host-directed therapy to mitigate early COVID-19 hyperinflammation as well as its long-term outcomes.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3605-3605 ◽  
Author(s):  
Myesa Emberesh ◽  
Katie Giger Seu ◽  
Sana Emberesh ◽  
Lisa Trump ◽  
Mary Risinger ◽  
...  

Abstract CDAR (ClinicalTrials.gov Identifier: NCT02964494), a registry for patients with Congenital Dyserythropoietic Anemia (CDA) in North America, has been created with the goal to provide a longitudinal database and associated biorepository to facilitate natural history studies and research on the molecular pathways involved in the pathogenesis of CDAs. A 1 y.o. female patient with non-immune hemolytic anemia with suboptimal reticulocytosis, requiring frequent transfusions, and with the pathologic diagnosis of CDA was enrolled in CDAR. Her father had a similar phenotypical presentation in early childhood and underwent splenectomy at 3 years of age. Since then, he has rarely required transfusions but he continues to have a mild anemia at baseline with characteristics of hemolysis and with suboptimal reticulocytosis; at the time of enrollment, he had hemoglobin of 9.3 g/dL with absolute reticulocyte count of 115 x 106 cells/µl. Next Generation sequencing and deletion/duplication assay for the known CDA-associated genes (CDAN1, C15ORF41, SEC23B, KIF23, GATA1) identified no mutations. Whole-exome sequencing for the patient and her parents (family-trio design) revealed a novel PRDX2 missense variant (c.154C>T; p.Pro52Ser) present in heterozygous state in both proband and her father; no mutation in this gene was present in the asymptomatic mother. In silico prediction programs suggest that this variant is probably damaging and deleterious, causing a non-conservative substitution of a phylogenetically highly-conserved amino acid (down to Baker's yeast), and located in an enzymatically active protein domain, adjacent to the active Cys51, with the potential to change its conformation. Peroxiredoxin II is highly expressed during terminal erythropoiesis and is one of the most abundant proteins after hemoglobin in erythroblasts and mature erythrocytes. It is an antioxidant enzyme that reduces the reactive oxygen species (ROS), like hydrogen peroxide and alkyl hydroperoxides readily produced within the erythroid cells due to the presence of heme iron and oxygen. In addition, PRDX2 has been implicated in intracellular signaling, cellular proliferation and differentiation, and as a regulator of iron homeostasis. PRDX2-/- mice were found to have hemolytic anemia with evidence of oxidative damage of the erythrocyte proteins resulting to decreased red blood cell (RBC) survival. The aim of this work is to validate the pathogenetic role of the PRDX2 variant found in this family as the molecular cause of this dominantly-inherited CDA and further investigate the role of PRDX2 in human terminal erythropoiesis. Central review of the patient's bone marrow aspirate and biopsy slides, according to the CDAR protocol, revealed erythroid hyperplasia with dyserythropoiesis, including megaloblastoid changes, nuclear lobation and fragmentation, and binucleated erythroblasts (less than 10%), compatible with atypical CDA. There were rare erythroids with cytoplasmic bridging but no nuclear bridges. Review of the peripheral blood smear showed significant poikilocytosis, mild polychromasia, and the presence of blister and ghost cells reminiscent of G6PD deficiency, pointing to RBC damage by oxidative stress. Induced pluripotent stem cells (iPSCs) and EBV-immortalized lymphocytes were generated from the patients' peripheral blood mononuclear cells after informed consent per CDAR protocol, to allow further in vitro studies of the peroxiredoxin II-deficiency. Flow cytometry confirmed significantly increased ROS in the patients' derived versus control EBV-immortalized lymphocytes as well as in the reticulocytes and mature erythrocytes of the proband and her father, indicating that their PRDX2 variant is causing loss-of-function of the enzyme and increased oxidative stress. Further work is ongoing to explore the mechanisms of pathogenicity of peroxiredoxin II deficiency towards human dyserythropoiesis and decreased erythrocyte lifespan. To our knowledge, this is the first case of anemia described in humans associated with PRDX2 mutation implicating this gene as a novel candidate gene for atypical, dominantly-inherited CDA. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
R. Vani ◽  
R. Soumya ◽  
H. Carl ◽  
V. A. Chandni ◽  
K. Neha ◽  
...  

There is a dire necessity to improve blood storage and prolong shelf-life of blood. Very few studies have focused on oxidative stress (OS) in blood and its influence on plasma with storage. This study attempts to (i) elucidate the continuous changes occurring in plasma during storage through oxidant levels and antioxidant status and (ii) evaluate the influence of vitamin C (VC) as an additive during blood storage. Blood was drawn from maleWistarrats and stored for 25 days at 4°C. Blood samples were divided into control and experimental groups. Plasma was isolated every 5 days and the OS markers, antioxidant enzymes, lipid peroxidation, and protein oxidation products, were studied. Catalase activity increased in all groups with storage. Lipid peroxidation decreased in VC (10) but was maintained in VC (30) and VC (60). Although there were variations in all groups, carbonyls were maintained towards the end of storage. Advanced oxidation protein products (AOPP) increased in VC (30) and were maintained in VC (10) and VC (60). Sulfhydryls were maintained in all groups. Vitamin C could not sufficiently attenuate OS and hence, this opens the possibilities for further studies on vitamin C in combination with other antioxidants, in storage solutions.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


Sign in / Sign up

Export Citation Format

Share Document