scholarly journals Dynamic changes of driver genes’ mutations across clinical stages in nine cancer types

2016 ◽  
Vol 5 (7) ◽  
pp. 1556-1565 ◽  
Author(s):  
Xia Li
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marleen M. Nieboer ◽  
Luan Nguyen ◽  
Jeroen de Ridder

AbstractOver the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved version of our Multiple Instance Learning-based method to study the effect of somatic non-coding SVs disrupting boundaries of TADs and CTCF loops in 1646 cancer genomes. We demonstrate that svMIL2 predicts pathogenic non-coding SVs with an average AUC of 0.86 across 12 cancer types, and identifies non-coding SVs affecting well-known driver genes. The disruption of active (super) enhancers in open chromatin regions appears to be a common mechanism by which non-coding SVs exert their pathogenicity. Finally, our results reveal that the contribution of pathogenic non-coding SVs as opposed to driver SNVs may highly vary between cancers, with notably high numbers of genes being disrupted by pathogenic non-coding SVs in ovarian and pancreatic cancer. Taken together, our machine learning method offers a potent way to prioritize putatively pathogenic non-coding SVs and leverage non-coding SVs to identify driver genes. Moreover, our analysis of 1646 cancer genomes demonstrates the importance of including non-coding SVs in cancer diagnostics.


2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.


2020 ◽  
Vol 21 (17) ◽  
pp. 6087
Author(s):  
Yunzhen Wei ◽  
Limeng Zhou ◽  
Yingzhang Huang ◽  
Dianjing Guo

Long noncoding RNA (lncRNA)/microRNA(miRNA)/mRNA triplets contribute to cancer biology. However, identifying significative triplets remains a major challenge for cancer research. The dynamic changes among factors of the triplets have been less understood. Here, by integrating target information and expression datasets, we proposed a novel computational framework to identify the triplets termed as “lncRNA-perturbated triplets”. We applied the framework to five cancer datasets in The Cancer Genome Atlas (TCGA) project and identified 109 triplets. We showed that the paired miRNAs and mRNAs were widely perturbated by lncRNAs in different cancer types. LncRNA perturbators and lncRNA-perturbated mRNAs showed significantly higher evolutionary conservation than other lncRNAs and mRNAs. Importantly, the lncRNA-perturbated triplets exhibited high cancer specificity. The pan-cancer perturbator OIP5-AS1 had higher expression level than that of the cancer-specific perturbators. These lncRNA perturbators were significantly enriched in known cancer-related pathways. Furthermore, among the 25 lncRNA in the 109 triplets, lncRNA SNHG7 was identified as a stable potential biomarker in lung adenocarcinoma (LUAD) by combining the TCGA dataset and two independent GEO datasets. Results from cell transfection also indicated that overexpression of lncRNA SNHG7 and TUG1 enhanced the expression of the corresponding mRNA PNMA2 and CDC7 in LUAD. Our study provides a systematic dissection of lncRNA-perturbated triplets and facilitates our understanding of the molecular roles of lncRNAs in cancers.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


2017 ◽  
Author(s):  
Luis Zapata ◽  
Hana Susak ◽  
Oliver Drechsel ◽  
Marc R. Friedländer ◽  
Xavier Estivill ◽  
...  

AbstractTumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian inference model for driver prediction. In an in-depth benchmark, we demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.


Author(s):  
Joo Sang Lee ◽  
Nishanth Ulhas Nair ◽  
Lesley Chapman ◽  
Sanju Sinha ◽  
Kun Wang ◽  
...  

AbstractPrecision oncology has made significant advances in the last few years, mainly by targeting actionable mutations in cancer driver genes. However, the proportion of patients whose tumors can be targeted therapeutically remains limited. Recent studies have begun to explore the benefit of analyzing tumor transcriptomics data to guide patient treatment, raising the need for new approaches for systematically accomplishing that. Here we show that computationally derived genetic interactions can successfully predict patient response. Assembling a broad repertoire of 32 datasets spanning more than 1,500 patients and including both tumor transcriptomics and response data, we predicted the response in 17 out of 21 targeted and 8 out of 11 checkpoint therapy datasets across 8 different cancer types with considerable accuracy, without ever training on these datasets. Analyzing the recently published multi-arm WINTHER trial, we show that the fraction of patients benefitting from transcriptomic-based treatments could potentially be markedly increased from 15% to about 85% by targeting synthetic lethal vulnerabilities in their tumors. In summary, this is the first computational approach to obtain considerable predictive performance across many different targeted and immunotherapy datasets, providing a promising new way for guiding cancer treatment based on the tumor transcriptomics of cancer patients.


Author(s):  
Tomi Jun ◽  
Tao Qing ◽  
Guanlan Dong ◽  
Maxim Signaevski ◽  
Julia F Hopkins ◽  
...  

AbstractGenomic features such as microsatellite instability (MSI) and tumor mutation burden (TMB) are predictive of immune checkpoint inhibitor (ICI) response. However, they do not account for the functional effects of specific driver gene mutations, which may alter the immune microenvironment and influence immunotherapy outcomes. By analyzing a multi-cancer cohort of 1,525 ICI-treated patients, we identified 12 driver genes in 6 cancer types associated with treatment outcomes, including genes involved in oncogenic signaling pathways (NOTCH, WNT, FGFR) and chromatin remodeling. Mutations of PIK3CA, PBRM1, SMARCA4, and KMT2D were associated with worse outcomes across multiple cancer types. In comparison, genes showing cancer-specific associations—such as KEAP1, BRAF, and RNF43—harbored distinct variant types and variants, some of which were individually associated with outcomes. In colorectal cancer, a common RNF43 indel was a putative neoantigen associated with higher immune infiltration and favorable ICI outcomes. Finally, we showed that selected mutations were associated with PD-L1 status and could further stratify patient outcomes beyond MSI or TMB, highlighting their potential as biomarkers for immunotherapy.


2020 ◽  
Author(s):  
Bo Gao ◽  
Michael Baudis

AbstractCopy number aberrations (CNA) are one of the most important classes of genomic mutations related to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental in the identification of cancer-related genes and promoted research into the relation between CNA and histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles pose great challenges for data integration and comparative analysis. Furthermore, a majority of existing studies has been focused on the association of CNA to pre-selected “driver” genes with limited application to rare drivers and other genomic elements.In this study, we developed a bioinformatic pipeline to integrate a collection of 44,988 high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of origin from copy number profiling data. The investigation of the signatures suggested common patterns, not only of physiologically related cancer types but also of clinico-pathologically distant cancer types such as different cancers originating from the neural crest. Further experiments of classification models confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated their potential in tumor classification.


2020 ◽  
Vol 36 (14) ◽  
pp. 4144-4153
Author(s):  
Jack LeBien ◽  
Gerald McCollam ◽  
Joel Atallah

Abstract Motivation Recent research has uncovered roles for transposable elements (TEs) in multiple evolutionary processes, ranging from somatic evolution in cancer to putatively adaptive germline evolution across species. Most models of TE population dynamics, however, have not incorporated actual genome sequence data. The effect of site integration preferences of specific TEs on evolutionary outcomes and the effects of different selection regimes on TE dynamics in a specific genome are unknown. We present a stochastic model of LINE-1 (L1) transposition in human cancer. This system was chosen because the transposition of L1 elements is well understood, the population dynamics of cancer tumors has been modeled extensively, and the role of L1 elements in cancer progression has garnered interest in recent years. Results Our model predicts that L1 retrotransposition (RT) can play either advantageous or deleterious roles in tumor progression, depending on the initial lesion size, L1 insertion rate and tumor driver genes. Small changes in the RT rate or set of driver tumor-suppressor genes (TSGs) were observed to alter the dynamics of tumorigenesis. We found high variation in the density of L1 target sites across human protein-coding genes. We also present an analysis, across three cancer types, of the frequency of homozygous TSG disruption in wild-type hosts compared to those with an inherited driver allele. Availability and implementation Source code is available at https://github.com/atallah-lab/neoplastic-evolution. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 21 (10) ◽  
pp. 771-783 ◽  
Author(s):  
Yin Wang ◽  
Zhenhao Liu ◽  
Baofeng Lian ◽  
Lei Liu ◽  
Lu Xie

Aim and Objective: Integrating multi-omics data to identify driver genes and key biological functions for tumorigenesis remains a major challenge. Method: A new computational pipeline was developed to identify the Driver Mutation-Differential Co-Expression (DM-DCE) modules based on dysfunctional networks across 11 TCGA cancers. Results: Functional analyses provided insight into the properties of various cancers, and found common cellular signals / pathways of cancers. Furthermore, the corresponding network analysis identified conservations or interactions across different types of cancers, thus the crosstalk between the key signaling pathways, immunity and cancers was found. Clinical analysis also identified key prognostic / survival patterns. Conclusion: Taken together, our study sheds light on both cancer-specific and cross-cancer characteristics systematically.


Sign in / Sign up

Export Citation Format

Share Document