Visualization of Structural Changes During Deactivation and Regeneration of FAU Zeolite for Catalytic Fast Pyrolysis of Lignin Using NMR and Electron Microscopy Techniques

ChemCatChem ◽  
2018 ◽  
Vol 10 (19) ◽  
pp. 4431-4437 ◽  
Author(s):  
Zhiqiang Ma ◽  
Ashim Ghosh ◽  
Navinchandra Asthana ◽  
Jeroen van Bokhoven
Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


Author(s):  
Gregory J. Czarnota

Chromatin structure at the fundamental level of the nucleosome is important in vital cellular processes. Recent biochemical and genetic analyses show that nucleosome structure and structural changes are very active participants in gene expression, facilitating or inhibiting transcription and reflecting the physiological state of the cell. Structural states and transitions for this macromolecular complex, composed of DNA wound about a heterotypic octamer of variously modified histone proteins, have been measured by physico-chemical techniques and by enzyme-accessibility and are recognized to occur with various post-translational modifications, gene activation, transformation and with ionic-environment. In spite of studies which indicate various forms of nucleosome structure, all current x-ray and neutron diffraction studies have consistently resulted in only one structure, suggestive of a static conformation. In contrast, two-dimensional electron microscopy studies and three-dimensional reconstruction techniques have yielded different structures. These fundamental differences between EM and other ultrastructural studies have created a long standing quandary, which I have addressed and resolved using spectroscopic electron microscopy and statistical analyses of nucleosome images in a study of nucleosome structure with ionic environment.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


1999 ◽  
Vol 82 (08) ◽  
pp. 277-282 ◽  
Author(s):  
Yuri Veklich ◽  
Jean-Philippe Collet ◽  
Charles Francis ◽  
John W. Weisel

IntroductionMuch is known about the fibrinolytic system that converts fibrin-bound plasminogen to the active protease, plasmin, using plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator. Plasmin then cleaves fibrin at specific sites and generates soluble fragments, many of which have been characterized, providing the basis for a molecular model of the polypeptide chain degradation.1-3 Soluble degradation products of fibrin have also been characterized by transmission electron microscopy, yielding a model for their structure.4 Moreover, high resolution, three-dimensional structures of certain fibrinogen fragments has provided a wealth of information that may be useful in understanding how various proteins bind to fibrin and the overall process of fibrinolysis (Doolittle, this volume).5,6 Both the rate of fibrinolysis and the structures of soluble derivatives are determined in part by the fibrin network structure itself. Furthermore, the activation of plasminogen by t-PA is accelerated by the conversion of fibrinogen to fibrin, and this reaction is also affected by the structure of the fibrin. For example, clots made of thin fibers have a decreased rate of conversion of plasminogen to plasmin by t-PA, and they generally are lysed more slowly than clots composed of thick fibers.7-9 Under other conditions, however, clots made of thin fibers may be lysed more rapidly.10 In addition, fibrin clots composed of abnormally thin fibers formed from certain dysfibrinogens display decreased plasminogen binding and a lower rate of fibrinolysis.11-13 Therefore, our increasing knowledge of various dysfibrinogenemias will aid our understanding of mechanisms of fibrinolysis (Matsuda, this volume).14,15 To account for these diverse observations and more fully understand the molecular basis of fibrinolysis, more knowledge of the physical changes in the fibrin matrix that precede solubilization is required. In this report, we summarize recent experiments utilizing transmission and scanning electron microscopy and confocal light microscopy to provide information about the structural changes occurring in polymerized fibrin during fibrinolysis. Many of the results of these experiments were unexpected and suggest some aspects of potential molecular mechanisms of fibrinolysis, which will also be described here.


2019 ◽  
Vol 143 ◽  
pp. 104669 ◽  
Author(s):  
Qiang Lu ◽  
Zhen-xi Zhang ◽  
Xiao-ning Ye ◽  
Kai Li ◽  
Min-shu Cui ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


2021 ◽  
Vol 9 (3) ◽  
pp. 1235-1245
Author(s):  
Richard J. French ◽  
Kristiina Iisa ◽  
Kellene A. Orton ◽  
Michael B. Griffin ◽  
Earl Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document