ChemInform Abstract: In situ Synthesis of High Density Magnetic Ferrite Spinel (MgFe2O4) Compacts Using a Mixture of Conventional Raw Materials and Waste Iron Oxide.

ChemInform ◽  
2010 ◽  
Vol 41 (12) ◽  
Author(s):  
Y. M. Z. Ahmed ◽  
E. M. M. Ewais ◽  
Z. I. Zaki
Author(s):  
Abdulmumin Adebisi ◽  
Tajudeen Mojisola ◽  
Umar Shehu ◽  
Muhammed Sani Adam ◽  
Yusuf Abdulaziz

In-situ synthesis of high-density polyethylene (HDPE) reinforced groundnut shell particulate (GSP) composite with treated GSP within the range of 10-30 wt% at 10 wt% has been achieved. The adopted technique used in the production of the composite is melt mixing and compounding using two roll mills with a compression moulding machine. Properties such as hardness, tensile strength, impact energy and water absorption analysis were examined. The result revealed that addition of GSP increases the hardness value from 22.3 to 87 Hv. However, the tensile strength progressively decreased as the GSP increases in the HDPE. This trend arises due to the interaction between neighbouring reinforced particulate which appears to influence the matrix flow, thereby inducing embrittlement of the polymer matrix. It was also observed that water absorption rate steadily increased with an increase in the exposure time and the absorbed amount of water increases by increasing the wt% of the GSP. Analysing the obtained results, it was concluded that there were improvements in the hardness, tensile strength, impact energy and water absorption properties of the HDPE-GSP polymer composite when compared to unreinforced HDPE. On these premises, GSP was found as a promising reinforcement which can positively influence the HDPE properties of modern composites.


2020 ◽  
Vol 10 (4) ◽  
pp. 1107-1120
Author(s):  
Karina Almeida Barcelos ◽  
Marli Luiza Tebaldi ◽  
Eryvaldo Socrates Tabosa do Egito ◽  
Nádia Miriceia Leão ◽  
Daniel Cristian Ferreira Soares

2020 ◽  
Vol 35 (18) ◽  
pp. 2441-2450
Author(s):  
Sadia Hossain ◽  
Mahbubor Rahman ◽  
Yeasmin Nahar ◽  
Abdur Rahman ◽  
Mostafa Kaiyum Sharafat ◽  
...  

Abstract


2021 ◽  
Vol 902 ◽  
pp. 81-86
Author(s):  
Shu Mao Zhao ◽  
Ling Ran Zhao

In this study, B4C-TiB2 ceramic composites were manufactured by hot pressing method. The raw materials for the in-situ synthesis of TiB2 were TiO2 and TiC. After being sintered at 1900°C for 60min under a pressure of 30MPa, compact composites samples with a TiB2 volume fraction range from 0 to 11.05% were prepared. The relative density, fracture toughness and flexural strength of different sample were tested. Microstructures on the fracture surface were studied by SEM. The result shows that B4C-TiB2 ceramic composites sintered from B4C-TiC had a better mechanical property than the one sintered from B4C-TiO2. When the content of TiB2 (reacted from TiC) was 11.05vol.%, the strength and toughness of B4C-TiB2 ceramics can reach 598MPa and 6.45MPa·m1/2. The toughening mechanisms of B4C-TiB2 composites include micro-crack toughening and energy consumption by the pulling out process of second phase.


2009 ◽  
Vol 24 (5) ◽  
pp. 1833-1841 ◽  
Author(s):  
Yuqin Zhou ◽  
Yong Zhang ◽  
Ruying Li ◽  
Mei Cai ◽  
Xueliang Sun

We demonstrate here in situ synthesis of bulk yield W18O49@carbon coaxial nanocables based on an easily controlled chemical vapor deposition process at relatively low temperature (760 °C) using metallic tungsten powder and ethylene (C2H4) as the raw materials. Transmission electron microscope (TEM), energy dispersive x-ray (EDX), and x-ray diffraction (XRD) analyses indicate that the resultant nanostructures are composed of single-crystalline W18O49 nanowires, coaxially covered with amorphous carbon walls. A vapor–solid (VS) mechanism is proposed to interpret the formation of the nanocables. The effect of carbon sources on the nanocable growth was investigated. The results revealed that the introduction of carbon species not only causes the production of W18O49@C nanocable structures, but also obviously modulates growth behaviors and core/shell diameter ratio of the nanocables. The obtained nanocables may find great applications in catalyst systems and optical and electronic nanodevices because of their enhanced surface properties, as well as in high chemical stability.


Sign in / Sign up

Export Citation Format

Share Document