scholarly journals In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models

ChemMedChem ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 1003-1017 ◽  
Author(s):  
María Julia Martín ◽  
Claudia Gentili ◽  
Verónica Lassalle
BioMetals ◽  
2021 ◽  
Author(s):  
Alessio Menconi ◽  
Tiziano Marzo ◽  
Lara Massai ◽  
Alessandro Pratesi ◽  
Mirko Severi ◽  
...  

AbstractChloro(triethylphosphine)gold(I), (Et3PAuCl hereafter), is an Auranofin (AF)-related compound showing very similar biological and pharmacological properties. Like AF, Et3PAuCl exhibits potent antiproliferative properties in vitro toward a variety of cancer cell lines and is a promising anticancer drug candidate. We wondered whether Et3PAuCl encapsulation might lead to an improved pharmacological profile also considering the likely reduction of unwanted side-reactions that are responsible for adverse effects and for drug inactivation. Et3PAuCl was encapsulated in biocompatible PLGA–PEG nanoparticles (NPs) and the new formulation evaluated in colorectal HCT-116 cancer cells in comparison to the free gold complex. Notably, encapsulated Et3PAuCl (nano-Et3PAuCl hereafter) mostly retains the cellular properties of the free gold complex and elicits even greater cytotoxic effects in colorectal cancer (CRC) cells, mediated by apoptosis and autophagy. Moreover, a remarkable inhibition of two crucial signaling pathways, i.e. ERK and AKT, by nano-Et3PAuCl, was clearly documented. The implications of these findings are discussed.


2020 ◽  
Vol 21 (11) ◽  
pp. 4152 ◽  
Author(s):  
Enzo Spisni ◽  
Giovannamaria Petrocelli ◽  
Veronica Imbesi ◽  
Renato Spigarelli ◽  
Demetrio Azzinnari ◽  
...  

Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, most of them commonly used in the human diet. In recent years, many studies have analyzed their antimicrobial, antioxidant, anti-inflammatory, immunomodulatory and anticancer properties in vitro and on experimentally induced animal models of colitis and colorectal cancer. However, there are still few clinical studies aimed to understand their role in the modulation of the intestinal pathophysiology. Many EOs and some of their molecules have demonstrated their efficacy in inhibiting bacterial, fungi and virus replication and in modulating the inflammatory and oxidative processes that take place in experimental colitis. In addition to this, their antitumor activity against colorectal cancer models makes them extremely interesting compounds for the modulation of the pathophysiology of the large bowel. The characterization of these EOs is made difficult by their complexity and by the different compositions present in the same oil having different geographical origins. This review tries to shift the focus from the EOs to their individual compounds, to expand their possible applications in modulating colon pathophysiology.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Eileen Reidy ◽  
Niamh A. Leonard ◽  
Oliver Treacy ◽  
Aideen E. Ryan

Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect in developing effective therapeutics for CRC patients is understanding the interactions that take place in the tumor microenvironment (TME), as it has been shown to contribute to drug resistance in vivo. Much research over the past 100 years has focused on 2D monolayer cultures or in vivo studies, however, the efficacy in translating these to the clinic is very low. More recent studies are turning towards developing an effective 3D model of CRC that is clinically relevant, that can recapitulate the TME in vitro and bridge the gap between 2D cultures and in vivo studies, with the aim of reducing the use of animal models in the future. This review summarises the advantages and limitations of different 3D CRC models. It emphasizes how different 3D models may be optimised to study cellular and extracellular interactions that take place in the TME of CRC in an effort to allow the development of more translatable effective treatment options for patients.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Aurélie Rondon ◽  
Nancy Ty ◽  
Jean-Baptiste Bequignat ◽  
Mercedes Quintana ◽  
Arnaud Briat ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (26) ◽  
pp. 39595-39608 ◽  
Author(s):  
Michael S. Lee ◽  
Timothy L. Helms ◽  
Ningping Feng ◽  
Jason Gay ◽  
Qing Edward Chang ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Adam Carie ◽  
Jonathan Rios-Doria ◽  
Tara Costich ◽  
Brian Burke ◽  
Richard Slama ◽  
...  

Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

2019 ◽  
Vol 26 (7) ◽  
pp. 512-522
Author(s):  
Xian Li ◽  
Long Xia ◽  
Xiaohui Ouyang ◽  
Qimuge Suyila ◽  
Liya Su ◽  
...  

<P>Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application. </P><P> Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice. </P><P> Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors. </P><P> Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice. </P><P> Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.</P>


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document