scholarly journals In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange

ChemPhysChem ◽  
2020 ◽  
Vol 21 (13) ◽  
pp. 1474-1482 ◽  
Author(s):  
Steffan Møller Sønderskov ◽  
Lasse Hyldgaard Klausen ◽  
Sebastian Amland Skaanvik ◽  
Xiaojun Han ◽  
Mingdong Dong
2018 ◽  
Vol 49 (5) ◽  
pp. 584-596 ◽  
Author(s):  
Mohammad MA Khan ◽  
Anish Khan ◽  
Abdullah M Asiri ◽  
VK Gupta ◽  

In the present study, a polyvinyl chloride-based barium tungstate ion-exchange membrane was synthesized by sol–gel method. The structure of membrane was studied in terms of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. X-ray diffraction analysis confirms crystalline form of the composite membrane without any other impurity. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis show the uniform arrangement of particles in the membrane with crack-free surface structure and presence of different functional groups of the organic-inorganic materials. The electrochemical properties like surface charge density ( D), transport number and mobility ratio of the ion-exchange composite membrane were theoretically evaluated and compared with observed values using “Teorell, Meyers and Sievers” method. Transport number follows the order as KCl <NaCl < LiCl < NH4Cl, while the surface charge density showed reversed order. The results showed that the low concentration of electrolytes favors the high mobility of univalent cation in the present study. The above result proves the analytical utility of polyvinyl chloride-based barium tungstate ion-exchange membrane in environmental management.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


Author(s):  
Linards Lapčinskis ◽  
Artis Linarts ◽  
Kaspars Mālnieks ◽  
Hyunseung Kim ◽  
Kristaps Rubenis ◽  
...  

In this study, we investigate triboelectrification in polymer-based nanocomposites using identical polymer matrixes containing different concentrations of nanoparticles (NPs). The triboelectric surface charge density on polymer layers increased as the...


2021 ◽  
Vol 22 (5) ◽  
pp. 2270
Author(s):  
Joanna Kotyńska ◽  
Monika Naumowicz

Interactions between phospholipid membranes and selected drugs affecting the central nervous system (CNS) were investigated. Small, unilamellar liposomes were used as biomimetic cell membrane models. Microelectrophoretic experiments on two-component liposomes were performed using the electrophoretic light scattering technique (ELS). The effect of both positively (perphenazine, PF) and negatively (barbituric acid, BA) charged drugs on zwitterionic L-α-phosphatidylcholine (PC) membranes were analyzed. Experimental membrane surface charge density (d) data were determined as a function of pH. Quantitative descriptions of the adsorption equilibria formed due to the binding of solution ions to analyzed two-component membranes are presented. Binding constants of the solution ions with perphenazine and barbituric acid-modified membranes were determined. The results of our research show that both charged drugs change surface charge density values of phosphatidylcholine membranes. It can be concluded that perphenazine and barbituric acid are located near the membrane surface, interacting electrostatically with phosphatidylcholine polar heads.


2020 ◽  
Vol 22 (35) ◽  
pp. 20123-20142
Author(s):  
Hadi Saboorian-Jooybari ◽  
Zhangxin Chen

This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution.


Nanoscale ◽  
2017 ◽  
Vol 9 (27) ◽  
pp. 9668-9675 ◽  
Author(s):  
Jia Jia Shao ◽  
Wei Tang ◽  
Tao Jiang ◽  
Xiang Yu Chen ◽  
Liang Xu ◽  
...  

A multi-dielectric-layered vertical contact-separation mode TENG through a corona discharge approach results in outstanding output performances, i.e., a high surface charge density of 283 μC m−2 and excellent cycling stability (92.6% retention after 200 000 cycles).


Geoderma ◽  
2004 ◽  
Vol 121 (1-2) ◽  
pp. 123-133 ◽  
Author(s):  
C. Taubaso ◽  
M. Dos Santos Afonso ◽  
R.M. Torres Sánchez

Sign in / Sign up

Export Citation Format

Share Document