High-Temperature Thermoelectric Properties of Pb1-xSnxTe:In

2007 ◽  
Vol 1044 ◽  
Author(s):  
Vladimir Jovovic ◽  
Suraj Joottu Thiagarajan ◽  
Joseph P. Heremans ◽  
Dmitry Khokhlov ◽  
Tanya Komissarova ◽  
...  

AbstractIndium in Pb1-xSnxTe alloys forms a resonant energy level in the conduction or valence bands, depending on x. In this study we investigate temperature dependence of the In level from 80 to 400K, complementing our previous work at 80 K. Measurements of electrical resistivity, thermopower, Hall and transverse Nernst-Ettinghausen effect are used to assess carrier mobility, Fermi level and scattering coefficient. Measurements are performed on a set of p and n type Pb1-xSnxTe:In with 0 < x < 30 at% and In up to 3 at%. We show that with increasing temperature the Fermi level crosses into the gap. It had been suggested theoretically that hybridization of the In level with one band at the Fermi level could have had a positive effect on the thermoelectric properties of materials, but the present results illustrate the need for temperature-dependent modeling and experimentation.

RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 24908-24914 ◽  
Author(s):  
Daifeng Zou ◽  
Guozheng Nie ◽  
Yu Li ◽  
Ying Xu ◽  
Jianguo Lin ◽  
...  

The enhancement of the thermoelectric properties of stannite-type Cu2ZnSnSe4 under biaxial strain can be ascribed to band convergence of the valence bands near the Fermi level.


2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Yu Zhao ◽  
Ashok Kumar ◽  
Giti A. Khodaparast ◽  
Amnah Eltahir ◽  
Hsin Wang ◽  
...  

AbstractThermoelectric properties of zinc oxide (ZnO) are largely influenced by its electrical property. In this paper, we investigated the correlation between the electrical resistivity and synthesis temperature for aluminum (Al)-modified ZnO. At constant Al doping, the electrical resistivity of ZnO exhibited sharp decrease with increase in sintering temperature due to the increased carrier density resulting from Al


2013 ◽  
Vol 27 (22) ◽  
pp. 1350108
Author(s):  
FANG JU LI

Ca 2.9 Ce 0.1 Co 4 O 9+δ/x wt% Cu 2 O nanocomposites have been studied as the thermoelectric materials for energy harvesting purpose. We evaluate the thermoelectric properties of the composites through temperature dependent thermopower, thermal conductivity and resistivity measurements. It is found that the introduction of Cu 2 O nanoparticles serves as phonon scattering centers, which reduces the thermal conductivity. The nanoinclusions contribute to a remarkable increase in electrical resistivity due to enhanced carrier scattering. As a result, Cu 2 O nanoinclusions do not succeed in improving ZT of Ca 2.9 Ce 0.1 Co 4 O 9+δ material.


2007 ◽  
Vol 124-126 ◽  
pp. 1019-1022 ◽  
Author(s):  
K.W. Jang ◽  
Il Ho Kim ◽  
Jung Il Lee ◽  
Good Sun Choi

Non-stoichiometric Zn4-xSb3 compounds with x=0~0.5 were prepared by vacuum melting at 1173K and annealing solidified ingots at 623K. Electrical resistivity and Seebeck coefficient at 450K increased from 1.8cm and 145K-1 for Zn4Sb3(x=0) to 56.2cm 350K-1 for Zn3.5Sb3(x=0.5) due to the decrease of the carrier concentration. Hall mobility and carrier concentration was 31.5cm2V-1s-1 and 1.32X1020cm-3 for Zn4Sb3 and 70cm2V-1s-1 and 2.80X1018cm-3 for Zn3.5Sb3. Electrical resistivity of Zn4-xSb3 with x=0~0.2 showed linearly increasing temperature dependence, whereas those of Zn4-xSb3 with x=0.3~0.5 above 450 K tended to decrease. Thermal conductivity of Zn4Sb3 was 8.5mWcm-1K-1 at room temperature and that of Zn4-xSb3 with x≥0.3 was around 11mWcm-1K-1. Maximum ZT of Zn4Sb3 was obtained around 1.3 at 600K. Zn4Sb3 with x=0.3~0.5 showed very small value of ZT=0.2~0.3.


2003 ◽  
Vol 793 ◽  
Author(s):  
M. Mikami ◽  
K. Chong ◽  
R. Funahashi

ABSTRACTWe have grown single crystals of Bi-substituted Ca3Co4O9 by a solution method. The cationic ratio (Ca, Bi)/Co of the grown crystals measured by an energy dispersive X-ray spectrometer tended to exceed that of the starting ratio (Ca, Bi)/Co=3/4. For instance, the average cationic composition of the grown crystals was Ca:Bi:Co=3.3:0.3:4, while that of the starting material was Ca:Bi:Co=2.7:0.3:4. So, the crystallographic structure of the obtained crystals may correspond to the Ca2Co2O5 phase rather than the Ca3Co4O9 phase. Thermoelectric properties in the direction of ab-axis were measured at various temperatures. Seebeck coefficient (S) of Ca3.3Bi0.3Co4O9+δ is positive and increases with increasing temperature from 130 to 200 μV/K in a temperature region of 300–973 K. The electrical resistivity (ρ) of the sample is about 1.5 mΩcm at whole temperature region of 300–973 K. This value is lower than that of non-substituted Ca3Co4O9. The thermoelectric power factor (S2/ρ) is improved by the Bi-substitution, resulting from the reduction of resistivity.


2013 ◽  
Vol 423-426 ◽  
pp. 593-596
Author(s):  
Qing Lin He ◽  
Zhan Ying Guo ◽  
Xing Hu ◽  
Hong Zhang Song

Cu doped Bi1.5Pb0.5Sr1.8La0.2Co2-xCuxOy(x = 0.0, 0.2, 0.4) samples were prepared through the solid state reaction method. The influence of different Cu doping contents on electrical resistivity, Seebeck coefficients, thermal conductivity, and the dimensionless figure of meritZTwas investigated. All the samples of Cu concentration 0.4 are single phases. The electrical resistivity of Bi1.5Pb0.5Sr1.8La0.2Co1.8Cu0.2Oydescends, and itsZTvalues are enhanced obviously. The results show that suitable element doping can modify the electric transport properties and enhance thermoelectric properties of materials.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jianbo Zhu ◽  
Xuemei Zhang ◽  
Muchun Guo ◽  
Jingyu Li ◽  
Jinsuo Hu ◽  
...  

AbstractThe single parabolic band (SPB) model has been widely used to preliminarily elucidate inherent transport behaviors of thermoelectric (TE) materials, such as their band structure and electronic thermal conductivity, etc. However, in the SPB calculation, it is necessary to determine some intermediate variables, such as Fermi level or the complex Fermi-Dirac integrals. In this work, we establish a direct carrier-concentration-dependent restructured SPB model, which eliminates Fermi-Dirac integrals and Fermi level calculation and emerges stronger visibility and usability in experiments. We have verified the reliability of such restructured model with 490 groups of experimental data from state-of-the-art TE materials and the relative error is less than 2%. Moreover, carrier effective mass, intrinsic carrier mobility and optimal carrier concentration of these materials are systematically investigated. We believe that our work can provide more convenience and accuracy for thermoelectric data analysis as well as instructive understanding on future optimization design.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose Recatala-Gomez ◽  
Pawan Kumar ◽  
Ady Suwardi ◽  
Anas Abutaha ◽  
Iris Nandhakumar ◽  
...  

Abstract The best known thermoelectric material for near room temperature heat-to-electricity conversion is bismuth telluride. Amongst the possible fabrication techniques, electrodeposition has attracted attention due to its simplicity and low cost. However, the measurement of the thermoelectric properties of electrodeposited films is challenging because of the conducting seed layer underneath the film. Here, we develop a method to directly measure the thermoelectric properties of electrodeposited bismuth telluride thin films, grown on indium tin oxide. Using this technique, the temperature dependent thermoelectric properties (Seebeck coefficient and electrical conductivity) of electrodeposited thin films have been measured down to 100 K. A parallel resistor model is employed to discern the signal of the film from the signal of the seed layer and the data are carefully analysed and contextualized with literature. Our analysis demonstrates that the thermoelectric properties of electrodeposited films can be accurately evaluated without inflicting any damage to the films.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 850-854 ◽  
Author(s):  
V.H. TRAN ◽  
R. TROĆ

Magnetic susceptibility and electrical resistivity have been measured on UCuGa, UCu1+xSn1−x, (x=0 and 0.1), and UPdAl. The first two compounds, crystallizing in the hexagonal CaIn2-type structure, show at low temperatures an antiferromagnetic ordering probably with complex structures. UPdAl, which adopts the orthorhombic TiNiSi-type structure, was found to be a weakly temperature-dependent paramagnet down to 4.2 K.


Sign in / Sign up

Export Citation Format

Share Document