Immortalized mouse articular cartilage cell lines retain chondrocyte phenotype and respond to both anabolic factor BMP-2 and pro-inflammatory factor IL-1

2008 ◽  
Vol 215 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Manas K. Majumdar ◽  
Priya S. Chockalingam ◽  
Ramesh A. Bhat ◽  
Richard Sheldon ◽  
Cristin Keohan ◽  
...  
Author(s):  
G. Verbruggen ◽  
A. M. Malfait ◽  
K. F. Almgvist ◽  
E. M. Veys ◽  
S. Thenet ◽  
...  

2009 ◽  
Vol 124 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Joon-Shik Shin ◽  
Namhee Park ◽  
Jehyeon Ra ◽  
Yangseok Kim ◽  
Minkyu Shin ◽  
...  

2020 ◽  
Vol 27 (28) ◽  
pp. 4647-4659 ◽  
Author(s):  
Haitang Liu ◽  
Ting Chen ◽  
Cuihua Dong ◽  
Xuejun Pan

Background: Hydrogel has a three-dimensional network structure that is able to absorb a large amount of water/liquid and maintain its original structure. Hemicellulose (HC) is the second most abundant polysaccharide after cellulose in plants and a heterogeneous polysaccharide consisting of various saccharide units. The unique physical and chemical properties of hemicellulose make it a promising material for hydrogels. Methods: This review first summarizes the three research hotspots on the hemicellulose-based hydrogels: intelligence, biodegradability and biocompatibility. It also overviews the progress in the fabrication and applications of hemicellulose hydrogels in the drug delivery system and tissue engineering (articular cartilage, cell immobilization, and wound dressing). Results: Hemicellulose-based hydrogels have many unique properties, such as stimuliresponsibility, biodegradability and biocompatibility. Interpenetrating networking can endow appropriate mechanical properties to hydrogels. These properties make the hemicellulose-based hydrogels promising materials in biomedical applications such as drug delivery systems and tissue engineering (articular cartilage, cell immobilization, and wound dressing). Conclusion: Hydrogels have been widely used in biomedicine and tissue engineering areas, such as tissue fillers, drug release agents, enzyme encapsulation, protein electrophoresis, contact lenses, artificial plasma, artificial skin, and tissue engineering scaffold materials. This article reviews the recent progress in the fabrication and applications of hemicellulose-based hydrogels in the biomedical field.


2021 ◽  
Vol 18 (3) ◽  
pp. 499-504
Author(s):  
Yingyi Wu ◽  
Guangxia Yang ◽  
Jing Fei ◽  
Yang Huang

Purpose: To investigate the effect of the hedgehog (Hh) pathway inhibitor, cyclopamine, and activator purmorphamine on articular cartilage cell proliferation. Methods: Rats were subjected to AA and CIA models. Secondary paw swelling was measured at 12, 15, 18, 21, 24, 27, and 30 days. The rats were sacrificed on day 30. Tissues from the cartilage and knee joints were collected. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay while cell apoptosis was determined by annexin V-fluorescein isothiocyanate/propidium iodide assay. Protein expression levels of Shh, Ptch1 and Gli1 were determined by Western blotting. Results: Compared with the control group, arthritis index and secondary foot swelling of the adjuvant arthritis (AA) and collagen-induced arthritis (CIA) groups deteriorated significantly (p < 0.05). MTT data revealed that cyclopamine promoted articular cartilage cell proliferation of the AA and CIA groups. The cell proliferation rates of AA and CIA groups were significantly higher than that of control group (p < 0.05). Flow cytometry showed that the cell apoptosis rates of AA and CIA groups were significantly lower than that of control group (p < 0.05). Compared with control, cyclopamine decreased the protein expression levels of sonic Hh, patched homologue 1 and glioma-associated oncogene homologue, but the effect of purmorphamine was the reverse. Conclusion: Hh pathway inhibitor (cyclopamine) and activator (purmorphamine) affect the expression of Hh pathway. Disruption of the Hh pathway may be of potential therapeutic significance in protecting articular cartilage from rheumatoid arthritis.


2021 ◽  
Vol 11 (9) ◽  
pp. 3729
Author(s):  
Katarzyna Balon ◽  
Benita Wiatrak

Models based on cell cultures have become a useful tool in modern scientific research. Since primary cell lines are difficult to obtain and handle, neoplasm-derived lines like PC12 and THP-1 offer a cheap and flexible solution for neurobiological studies but require prior differentiation to serve as a neuronal or microglia model. PC12 cells constitute a suitable research model only after differentiation by incubation with nerve growth factor (NGF) and THP-1 cells after administering a differentiation factor such as phorbol 12-myristate-13-acetate (PMA). Still, quite often, studies are performed on these cancer cells without differentiation. The study aimed to assess the impact of PC12 or THP-1 cell differentiation on sensitivity to harmful factors such as Aβ25-35 (0.001–5 µM) (considered as one of the major detrimental factors in the pathophysiology of Alzheimer’s disease) or lipopolysaccharide (1–100 µM) (LPS; a pro-inflammatory factor of bacterial origin). Results showed that in most of the tests performed, the response of PC12 and THP-1 cells induced to differentiation varied significantly from the effect in undifferentiated cells. In general, differentiated cells showed greater sensitivity to harmful factors in terms of metabolic activity and DNA damage, while in the case of the free radicals, the results were heterogeneous. Obtained data emphasize the importance of proper differentiation of cell lines of neoplastic origin in neurobiological research and standardization of cell culture handling protocols to ensure reliable results.


2002 ◽  
Vol 10 (12) ◽  
pp. 977-986 ◽  
Author(s):  
H.M. van Beuningen ◽  
R. Stoop ◽  
P. Buma ◽  
N. Takahashi ◽  
P.M. van der Kraan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document