High purity cyclohexane from petroleum streams by extractive distillation

2007 ◽  
Vol 23 (8) ◽  
pp. 581-588 ◽  
Author(s):  
Raghunath P. Tripathi ◽  
Jatinder M. Sagar ◽  
Indar B. Gulati
2010 ◽  
Author(s):  
◽  
Peterson Thokozani Ngema

Globally there is renewed interest in the production of alternate fuels in the form of bioethanol and biodiesel. This is mainly due to the realization that crude oil stocks are limited hence the swing towards more renewable sources of energy. Bioethanol and biodiesel have received increasing attention as excellent alternative fuels and have virtually limitless potential for growth. One of the key processing challenges in the manufacturing of biofuels is the production of high purity products. As bioethanol is the part of biofuels, the main challenge facing bioethanol production is the separation of high purity ethanol. The separation of ethanol from water is difficult because of the existence of an azeotrope in the mixture. However, the separation of the ethanol/water azeotropic system could be achieved by the addition of a suitable solvent, which influences the activity coefficient, relative volatility, flux and the separation factor or by physical separation based on molecular size. In this study, two methods of high purity ethanol separation are investigated: extractive distillation and pervaporation. The objective of this project was to optimize and compare the performance of pervaporation and extraction distillation in order to produce high purity ethanol. The scopes of the investigation include:  Study of effect of various parameters (i) operating pressure, (ii) operating temperature, and (iii) feed composition on the separation of ethanol-water system using pervaporation.  Study the effect of using salt as a separating agent and the operating pressure in the extractive distillation process. The pervaporation unit using a composite flat sheet membrane (hydrophilic membrane) produced a high purity ethanol, and also achieved an increase in water flux with increasing pressure and feed temperature. The pervaporation unit facilitated separation beyond the ethanol – water system azeotropic point. It is concluded that varying the feed temperature and the operating pressure, the performance of the pervaporation membrane can be optimised. v The extractive distillation study using salt as an extractive agent was performed using the low pressure vapour-liquid equilibrium (LPVLE) still, which was developed by (Raal and Mühlbauer, 1998) and later modified by (Joseph et al. 2001). The VLE study indicated an increase in relative volatility with increase in salt concentration and increase in pressure operating pressure. Salt concentration at 0.2 g/ml and 0.3 g/ml showed complete elimination of the azeotrope in ethanol-water system. The experimental VLE data were regressed using the combined method and Gibbs excess energy models, particular Wilson and NRTL. Both models have shown the best fit for the ethanol/water system with average absolute deviation (AAD) below 0.005. The VLE data were subjected to consistency test and according to the Point test, were of high consistency with average absolute deviations between experimental and calculated vapour composition below 0.005. Both extractive distillation using salt as an extractive agent and pervaporation are potential technologies that could be utilized for the production of high purity ethanol in boiethanol-production.


Author(s):  
Erick de Jesús Hernández-Hernández ◽  
Julián Cabrera-Ruiz ◽  
Héctor Hernández-Escoto ◽  
Claudia Gutiérrez-Antonio ◽  
Salvador Hernández

2015 ◽  
Vol 723 ◽  
pp. 629-632
Author(s):  
Ji Quan Liu ◽  
Peng Wang

The process for production high-purity methylal, which used methanol and formalin in the presence of cation-exchange resin catalyst, was investigated in the reactive and extractive distillation column. Effect of feed mole ratio of formaldehyde in the extracting and reacting section, molar ratio of methanol and formaldehyde, reflux ratio on the content of methylal in the distillate were investigated. The results show that the purity of methylal can reach 99.1% under the optimum conditions.


Author(s):  
J. L. Brimhall ◽  
H. E. Kissinger ◽  
B. Mastel

Some information on the size and density of voids that develop in several high purity metals and alloys during irradiation with neutrons at elevated temperatures has been reported as a function of irradiation parameters. An area of particular interest is the nucleation and early growth stage of voids. It is the purpose of this paper to describe the microstructure in high purity nickel after irradiation to a very low but constant neutron exposure at three different temperatures.Annealed specimens of 99-997% pure nickel in the form of foils 75μ thick were irradiated in a capsule to a total fluence of 2.2 × 1019 n/cm2 (E > 1.0 MeV). The capsule consisted of three temperature zones maintained by heaters and monitored by thermocouples at 350, 400, and 450°C, respectively. The temperature was automatically dropped to 60°C while the reactor was down.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
E. B. Steel

High Purity Germanium (HPGe) x-ray detectors are now commercially available for the analytical electron microscope (AEM). The detectors have superior efficiency at high x-ray energies and superior resolution compared to traditional lithium-drifted silicon [Si(Li)] detectors. However, just as for the Si(Li), the use of the HPGe detectors requires the determination of sensitivity factors for the quantitative chemical analysis of specimens in the AEM. Detector performance, including incomplete charge, resolution, and durability has been compared to a first generation detector. Sensitivity factors for many elements with atomic numbers 10 through 92 have been determined at 100, 200, and 300 keV. This data is compared to Si(Li) detector sensitivity factors.The overall sensitivity and utility of high energy K-lines are reviewed and discussed. Many instruments have one or more high energy K-line backgrounds that will affect specific analytes. One detector-instrument-specimen holder combination had a consistent Pb K-line background while another had a W K-line background.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


Sign in / Sign up

Export Citation Format

Share Document