Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese

2012 ◽  
Vol 175 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Md. Rezaul Karim ◽  
Yue-Qiang Zhang ◽  
Rong-Rong Zhao ◽  
Xin-Ping Chen ◽  
Fu-Suo Zhang ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1223
Author(s):  
Mojde Sedaghat ◽  
Yahya Emam ◽  
Ali Mokhtassi-Bidgoli ◽  
Saeid Hazrati ◽  
Claudio Lovisolo ◽  
...  

Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.


Author(s):  
Ghorban Khodabin ◽  
Zeinolabedin Tahmasebi-Sarvestani ◽  
Amir Hossein Shirani Rad ◽  
Seyed Ali Mohammad Modarres-Sanavy ◽  
Seyed Mohammad Hashemi ◽  
...  

2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Heidi Webber ◽  
Frank Ewert ◽  
Jørgen E. Olesen ◽  
Christoph Müller ◽  
Stefan Fronzek ◽  
...  
Keyword(s):  

2012 ◽  
Vol 60 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D. Todorova ◽  
I. Sergiev ◽  
V. Alexieva

Wheat cultivars were grown as soil culture under normal growth conditions. Twoweek- old seedlings were exposed to 4°C for 6 h and then transferred to −12°C for 24 h in the dark. Twenty-four hours before freezing stress, some of the plants were sprayed with aqueous solutions of spermine, spermidine, putrescine, 1,3-diaminopropane (1,3-DAP) and diethylenetriamine (DETA). The data showed that freezing stress caused a decrease in the fresh weight, chlorophyll content and plant survival rate, accompanied by a simultaneous accumulation of free proline and the enhanced leakage of electrolytes. Preliminary treatment with polyamines caused a decline in electrolyte leakage and a considerable augmentation in proline quantity, indicating that the compounds are capable of preventing frost injury. Additionally, the foliar application of polyamines retarded the destruction of chlorophyll, and lessened fresh weight losses due to freezing stress. The synthetic triamine DETA was the most effective, having the most pronounced action in all the experiments, followed by the tetraamine spermine. The application of polyamines to wheat crops could be a promising approach for improving plant growth under unfavourable growth conditions, including freezing temperatures. The results demonstrate that treatment with polyamines could protect winter wheat by reducing the stress injuries caused by subzero temperatures.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2598
Author(s):  
Khaled G. Abdelrasheed ◽  
Yasser Mazrou ◽  
Alaa El-Dein Omara ◽  
Hany S. Osman ◽  
Yasser Nehela ◽  
...  

Water scarcity, due to physical shortage or inadequate access, is a major global challenge that severely affects agricultural productivity and sustainability. Deficit irrigation is a promising strategy to overcome water scarcity, particularly in arid and semiarid regions with limited freshwater resources. However, precise application of deficit irrigation requires a better understanding of the plant response to water/drought stress. In the current study, we investigated the potential impacts of biochar-based soil amendment and foliar potassium-humate application (separately or their combination) on the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficient irrigation conditions in two separate field trials during the 2018/2019 and 2019/2020 seasons. Our findings showed that deficit irrigation negatively affected onion resilience to drought stress. However, these harmful effects were diminished after soil amendment using biochar, K-humate foliar application, or their combination. Briefly, integrated biochar and K-humate application increased onion growth, boosted the content of the photosynthetic pigments, enhanced the water relations, and increased the yield traits of deficient irrigation onion plants. Moreover, it improved the biochemical response, enhanced the activities of antioxidant enzymes, and enriched the nutrient value of deficiently irrigated onion plants. Collectively, these findings highlight the potential utilization of biochar and K-humate as sustainable eco-friendly strategies to improve onion resilience to deficit irrigation.


Author(s):  
Mohsen Janmohammadi ◽  
Hamid Mostafavi ◽  
Naser Sabaghnia

Abstract Lentil (Lens culinaris Medic.) is one of the important pulse crops in semiarid agro-ecological zones with a Mediterranean-type climate. Terminal drought stress and poor plant nutrition are important factors limiting crop under these regions. The effects of enzymatic biofertiliser (MOG) application at sowing time or during reproductive stage on some morphological traits and yield components of eight lentil lines were evaluated under deficit-irrigation conditions at Maragheh (37°23' N; 46°16' E) in northwestern Iran. Results revealed that application of biofertiliser did not significantly affect most of the morphological traits. However, foliar application of MOG during early flowering stage somewhat increased 100-grain weight and grain yield and decreased the number of empty pod per plant. Moreover, the results indicated that there was significant diversity between lentil lines for the investigated traits. The best performance for grain yield was recorded for FLIP 86-35L. The overall lack of considerable response of lentil to the MOG treatments may suggest that the optimal efficiency of biofertiliser cannot be achieved under water scarcity conditions. Improvement in the adaptation of enzymatic fertilisers to semi arid regions with terminal drought stress requires to be increased.


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


Sign in / Sign up

Export Citation Format

Share Document