Permethrin inhibits tube formation and viability of endothelial cells

Author(s):  
Hee‐Seop Lee ◽  
Hee‐Jung Song ◽  
Yeonhwa Park ◽  
Dmitriy Smolensky ◽  
Seong‐Ho Lee
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Maria Grazia Muoio ◽  
Marianna Talia ◽  
Rosamaria Lappano ◽  
Andrew H. Sims ◽  
Veronica Vella ◽  
...  

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S.A Mohammed ◽  
S Costantino ◽  
A Akhmedov ◽  
G Karsai ◽  
S Ambrosini ◽  
...  

Abstract Background Despite advances in revascularization strategies, type 2 diabetic (T2D) patients with peripheral artery disease (PAD) continue to have a high risk of limb amputation. Modulation of blood vessel growth holds great promise for the treatment of PAD patients. Epigenetic modifications, namely histone post-translational modifications, have shown to regulate transcriptional programs implicated in the pathogenesis of cardiovascular disease. Aim To investigate the role of chromatin changes in regulating post-ischemic vascularization in experimental diabetes as well as in patients with T2D. Methods Experiments were performed in primary human aortic endothelial cells (HAECs), double-mutant leptin deficient mice (Lepdb/db) carrying a genetic deletion of the methyltransferase SETD7 (Setd7−/−Lepdb/db) as well as in gastrocnemius muscle samples from T2D patients with PAD and age-matched non-diabetic controls. Unbiased gene expression profiling was performed by RNA sequencing (RNA-seq) followed by Ingenuity Pathway Analysis (IPA). Pharmacological blockade of SETD7 was performed by using the selective inhibitor (R)-PFI-2. Scratch and tube formation assays were performed to investigate the impact of SETD7 on angiogenic response. Results RNA-seq in high glucose-treated HAECs revealed a profound upregulation of the methyltransferase SETD7 (fold change 2.8, p<0.001), an enzyme involved in mono-methylation of lysine 4 at histone 3 (H3K4me1). Both SETD7 gene silencing and pharmacological inhibition by (R)PFI-2 rescued hyperglycemia-induced impairment of HAECs migration and tube formation, while SETD7 overexpression blunted the angiogenic response. RNA-seq and Chromatin Immunoprecipitation (ChIP) assays showed that SETD7-dependent H3K4me1 regulates the transcription of the angiogenesis inhibitor semaphorin-3G (SEMA-3G). Increased SEMA-3G transcript was associated with enhanced secretion from HAECs. Co-immunofluorescence experiments showed that SEMA-3G blunts the angiogenic response by competing with VEGF receptors VEGFR/Neuropillin2. Moreover, SEMA-3G overexpression blunted migration and tube formation in SETD7-depleted HAECs. SETD7 and SEMA-3G were significantly upregulated in endothelial cells from Lepdb/db mice, whereas SEMA-3G transcription was blunted in Setd7−/−Lepdb/db animals. Consistently, endothelial sprouting was defective in aortas from Lepdb/db as compared to WT mice, whereas Setd7−/−Lepdb/db mice displayed a preserved angiogenic response. Of clinical relevance, SETD7/SEMA-3G axis was upregulated in gastrocnemius muscle specimens from T2D patients with PAD as compared with non-diabetic controls. Conclusion In HAECs, genetically modified mice and T2D patients we show that SETD7-dependent chromatin changes regulate SEMA-3G transcription and angiogenic response. Pharmacological inhibition of SETD7 may represent a novel epigenetic therapy to boost neovascularization in T2D patients with PAD. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): University of Zurich/Universitätsspital Zürich


2021 ◽  
Vol 22 (12) ◽  
pp. 6466
Author(s):  
Yingji Xin ◽  
Kyungbaeg Roh ◽  
Eunae Cho ◽  
Deokhoon Park ◽  
Wankyunn Whang ◽  
...  

Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.


2012 ◽  
Vol 32 (5) ◽  
pp. 884-895 ◽  
Author(s):  
Fabricio Simão ◽  
Aline S Pagnussat ◽  
Ji Hae Seo ◽  
Deepti Navaratna ◽  
Wendy Leung ◽  
...  

Resveratrol may be a powerful way of protecting the brain against a wide variety of stress and injury. Recently, it has been proposed that resveratrol not only reduces brain injury but also promotes recovery after stroke. But the underlying mechanisms are unclear. Here, we tested the hypothesis that resveratrol promotes angiogenesis in cerebral endothelial cells and dissected the signaling pathways involved. Treatment of cerebral endothelial cells with resveratrol promoted proliferation, migration, and tube formation in Matrigel assays. Consistent with these pro-angiogenic responses, resveratrol altered endothelial morphology resulting in cytoskeletal rearrangements of β-catenin and VE-cadherin. These effects of resveratrol were accompanied by activation of phosphoinositide 3 kinase (PI3-K)/Akt and Mitogen-Activated Protein Kinase (MAPK)/ERK signaling pathways that led to endothelial nitric oxide synthase upregulation and increased nitric oxide (NO) levels. Subsequently, elevated NO signaling increased vascular endothelial growth factor and matrix metalloproteinase levels. Sequential blockade of these signaling steps prevented resveratrol-induced angiogenesis in cerebral endothelial cells. These findings provide a mechanistic basis for the potential use of resveratrol as a candidate therapy to promote angiogenesis and neurovascular recovery after stroke.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4978-4987 ◽  
Author(s):  
Elzbieta Pluskota ◽  
James J. Dowling ◽  
Natalie Gordon ◽  
Jeffrey A. Golden ◽  
Dorota Szpak ◽  
...  

Abstract Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice and causes severe developmental defects in zebrafish. Knockdown of kindlin-2 levels in endothelial cells resulted in defective adhesive and migratory responses, suggesting that angiogenesis might be aberrant even with partial reduction of kindlin-2. This hypothesis has now been tested in the kindlin-2+/− mice. RM1 prostate tumors grown in kindlin-2+/− mice had fewer blood vessels, which were thinner and shorter and supported less tumor growth compared with wild-type littermates. The vessels that did form in the kindlin-2+/− mice lacked smooth muscle cells and pericytes and had thinner basement membranes, indicative of immature vessels. VEGF-induced angiogenesis in matrigel implants was also abnormal in the kindlin-2+/− mice. Vessels in the kindlin-2+/− mice were leaky, and BM transplantation from kindlin-2+/− to WT mice did not correct this defect. Endothelial cells derived from kindlin-2+/− mice had integrin expression levels similar to WT mice but reduced αVβ3-dependent signaling, migration, adhesion, spreading, and tube formation. Developmental angiogenesis was markedly impaired by kindlin-2 morpholinos in zebrafish. Taken together, kindlin-2 plays an important role in pathologic and developmental angiogenesis, which arises from defective activation of integrin αVβ3.


2021 ◽  
Vol 18 ◽  
Author(s):  
Juxuan Ruan ◽  
Lei Wang ◽  
Jiheng Dai ◽  
Jing Li ◽  
Ning Wang ◽  
...  

Objective: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. Methods: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. Results: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB were increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. Conclusion: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


Sign in / Sign up

Export Citation Format

Share Document