scholarly journals Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering

2009 ◽  
Vol 120 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Jennifer L. Long ◽  
Patricia Zuk ◽  
Gerald S. Berke ◽  
Dinesh K. Chhetri
2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


2018 ◽  
Vol 43 (2) ◽  
pp. 183.e1-183.e9 ◽  
Author(s):  
Chao Long ◽  
Zhen Wang ◽  
Anais Legrand ◽  
Arhana Chattopadhyay ◽  
James Chang ◽  
...  

Biomaterials ◽  
2007 ◽  
Vol 28 (26) ◽  
pp. 3834-3842 ◽  
Author(s):  
Lauren Flynn ◽  
Glenn D. Prestwich ◽  
John L. Semple ◽  
Kimberly A. Woodhouse

2021 ◽  
Vol 48 (5) ◽  
pp. 559-567
Author(s):  
Antonio Jorge Forte ◽  
Daniel Boczar ◽  
Rachel Sarabia-Estrada ◽  
Maria T. Huayllani ◽  
Francisco R. Avila ◽  
...  

The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study’s goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.


2022 ◽  
Author(s):  
Katarína Kacvinská ◽  
Martina Trávničková ◽  
Lucy Vojtová ◽  
Petr Poláček ◽  
Jana Dorazilová ◽  
...  

Abstract This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.


2007 ◽  
Vol 342-343 ◽  
pp. 301-304 ◽  
Author(s):  
Kwi Deok Park ◽  
Hong Hee Jung ◽  
Jun Sik Son ◽  
Jong Won Rhie ◽  
Ki Dong Park ◽  
...  

Pluronic F127 has received increasing attention over many years as drug delivery systems, biomaterials, and hydrogels for tissue engineering. In this study, we synthesized temperature-sensitive and cell-adhesive triblock F127 copolymers, in which Arg-Gly-Asp (RGD) peptide ligand was grafted to Pluronic F127-4-methacryloxyethyl trimellitic anhydride (4-META) to obtain F127-META-RGD. The chemical structures of the F127-META-RGD block copolymers were confirmed by FTIR, 1H and 13C NMR, and GPC. The resultant F127-META-RGD showed very similar thermosensitive behaviors to F127 and F127-META. The critical micelle temperature (CMT) of the F127 copolymers decreased in the order of F127 < F127-META < F127-META-RGD, whereas the particle size followed an opposite trend. Interactions between the F127 copolymers and adipose-derived stem cells (ASC) were evaluated in terms of cell adhesion and proliferation on the hydrogel. These thermosensitive RGD-grafted Pluronic hydrogels that display the enhanced cell adhesiveness, are expected to be useful as a functional injectable scaffold for tissue engineering.


2013 ◽  
Vol 19 (11-12) ◽  
pp. 1327-1335 ◽  
Author(s):  
Ken Matsuda ◽  
Katrina J. Falkenberg ◽  
Alan A. Woods ◽  
Yu Suk Choi ◽  
Wayne A. Morrison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document