Fucoidan ameliorates pancreatic β-cell death and impaired insulin synthesis in streptozotocin-treated β cells and mice via a Sirt-1-dependent manner

2017 ◽  
Vol 61 (10) ◽  
pp. 1700136 ◽  
Author(s):  
Wen-Chun Yu ◽  
Yen-Lin Chen ◽  
Pai-An Hwang ◽  
Tso-Hsiao Chen ◽  
Tz-Chong Chou
2018 ◽  
Vol 73 (7-8) ◽  
pp. 281-289 ◽  
Author(s):  
Kung-Ha Choi ◽  
Mi Hwa Park ◽  
Hyun Ah Lee ◽  
Ji-Sook Han

Abstract Exposure to high levels of glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction, including cell apoptosis and impaired glucose-stimulated insulin secretion. The aim of this study was to explore the effect of cyanidin-3-rutinoside (C3R), a derivative of anthocyanin, on glucotoxicity-induced apoptosis in INS-1 pancreatic β cells. Glucose (30 mM) treatment induced INS-1 pancreatic β cell death, but glucotoxicity and apoptosis significantly decreased in cells treated with 50 μM C3R compared to that observed in 30 mM glucose-treated cells. Furthermore, hyperglycemia increased intracellular reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) levels, while C3R treatment reduced these in a dose-dependent manner. C3R also increased the activity of antioxidant enzymes, markedly reduced the expression of pro-apoptotic proteins (such as Bax, cytochrome c, caspase 9 and caspase 3), and increased the expression of the anti-apoptotic protein, Bcl-2, in hyperglycemia-exposed cells. Finally, cell death was examined using annexin V/propidium iodide staining, which revealed that C3R significantly reduced high glucose-induced apoptosis. In conclusion, C3R may have therapeutic effects against hyperglycemia-induced β cell damage in diabetes.


2014 ◽  
Vol 223 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Michael Rouse ◽  
Antoine Younès ◽  
Josephine M Egan

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1–10 μmol/l) and CUR (1–100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.


2006 ◽  
Vol 3 (3) ◽  
pp. 365-372 ◽  
Author(s):  
John Zeqi Luo ◽  
Luguang Luo

American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2) has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism). To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β), (200 pg ml−1, a cytokine to induce β cell apoptosis) and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture) for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.


2019 ◽  
Vol 317 (5) ◽  
pp. E794-E804 ◽  
Author(s):  
Guneet Makkar ◽  
Vipul Shrivastava ◽  
Brittyne Hlavay ◽  
Marle Pretorius ◽  
Barry D. Kyle ◽  
...  

Pancreatic islets adapt to the increase in insulin demand during pregnancy by upregulating β-cell number, insulin synthesis, and secretion. These changes require prolactin receptor (PrlR) signaling, as mice with PrlR deletion are glucose intolerant with a lower β-cell mass. Prolactin also prevents β-cell apoptosis. Many genes participate in these adaptive changes in the islet, and Lrrc55 is one of the most upregulated genes with unknown function in islets. Because Lrrc55 expression increases in parallel to the increase in β-cell number and insulin production during pregnancy, we hypothesize that Lrrc55 might regulate β-cell proliferation/apoptosis (thus β-cell number) and insulin synthesis. Here, we found that Lrrc55 expression was upregulated by >60-fold during pregnancy in a PrlR-dependent manner, and this increase was restricted only to the islets. Overexpression of Lrrc55 in β-cells had minimal effect on β-cell proliferation and glucose-stimulated insulin secretion but protected β-cells from glucolipotoxicity-induced reduction in insulin gene expression. Moreover, Lrrc55 protects β-cells from glucolipotoxicity-induced apoptosis, with upregulation of prosurvival signals and downregulation of proapoptotic signals of the endoplasmic reticulum (ER) stress pathway. Furthermore, Lrrc55 attenuated calcium depletion induced by glucolipotoxicity, which may contribute to its antiapoptotic effect. Hence our findings suggest that Lrrc55 is a novel prosurvival factor that is upregulated specifically in islets during pregnancy, and it prevents conversion of adaptive unfolded protein response to unresolved ER stress and apoptosis in β-cells. Lrrc55 could be a potential therapeutic target in diabetes by reducing ER stress and promoting β-cell survival.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 218
Author(s):  
Norikiyo Honzawa ◽  
Kei Fujimoto

Type 2 diabetes is caused by impaired insulin secretion and/or insulin resistance. Loss of pancreatic β-cell mass detected in human diabetic patients has been considered to be a major cause of impaired insulin secretion. Additionally, apoptosis is found in pancreatic β-cells; β-cell mass loss is induced when cell death exceeds proliferation. Recently, however, β-cell dedifferentiation to pancreatic endocrine progenitor cells and β-cell transdifferentiation to α-cell was reported in human islets, which led to a new underlying molecular mechanism. Hyperglycemia inhibits nuclear translocation and expression of forkhead box-O1 (FoxO1) and induces the expression of neurogenin-3(Ngn3), which is required for the development and maintenance of pancreatic endocrine progenitor cells. This new hypothesis (Foxology) is attracting attention because it explains molecular mechanism(s) underlying β-cell plasticity. The lineage tracing technique revealed that the contribution of dedifferentiation is higher than that of β-cell apoptosis retaining to β-cell mass loss. In addition, islet cells transdifferentiate each other, such as transdifferentiation of pancreatic β-cell to α-cell and vice versa. Islet cells can exhibit plasticity, and they may have the ability to redifferentiate into any cell type. This review describes recent findings in the dedifferentiation and transdifferentiation of β-cells. We outline novel treatment(s) for diabetes targeting islet cell plasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Zhang ◽  
Lihua Zhao ◽  
Runbing Jin ◽  
Min Li ◽  
Mei-Shuang Li ◽  
...  

Many ion channels participate in controlling insulin synthesis and secretion of pancreatic β-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic β-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic β-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC−/−) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC−/− MIN6 cells. Therefore, α-ENaC−/− MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic β-cells.


2019 ◽  
Vol 11 (4) ◽  
pp. 375-390 ◽  
Author(s):  
Maikel L. Colli ◽  
Flavia M. Paula ◽  
Lorella Marselli ◽  
Piero Marchetti ◽  
Merja Roivainen ◽  
...  

Type 1 diabetes (T1D) is an autoimmune disease characterized by islet inflammation and progressive pancreatic β cell destruction. The disease is triggered by a combination of genetic and environmental factors, but the mechanisms leading to the triggering of early innate and late adaptive immunity and consequent progressive pancreatic β cell death remain unclear. The insulin-producing β cells are active secretory cells and are thus particularly sensitive to endoplasmic reticulum (ER) stress. ER stress plays an important role in the pathologic pathway leading to autoimmunity, islet inflammation, and β cell death. We show here that group B coxsackievirus (CVB) infection, a putative causative factor for T1D, induces a partial ER stress in rat and human β cells. The activation of the PERK/ATF4/CHOP branch is blunted while the IRE1α branch leads to increased spliced XBP1 expression and c-Jun N-terminal kinase (JNK) activation. Interestingly, JNK1 activation is essential for CVB amplification in both human and rat β cells. Furthermore, a chemically induced ER stress preceding viral infection increases viral replication, in a process dependent on IRE1α activation. Our findings show that CVB tailors the unfolded protein response in β cells to support their replication, preferentially triggering the pro-viral IRE1α/XBP1s/JNK1 pathway while blocking the pro-apoptotic PERK/ATF4/CHOP pathway.


2006 ◽  
Vol 20 (1) ◽  
pp. 167-182 ◽  
Author(s):  
Jamie L. Volinic ◽  
Jee H. Lee ◽  
Kazuhiro Eto ◽  
Varinderpal Kaur ◽  
Melissa K. Thomas

Abstract Multiple forms of heritable diabetes are associated with mutations in transcription factors that regulate insulin gene transcription and the development and maintenance of pancreatic β-cell mass. The coactivator Bridge-1 (PSMD9) regulates the transcriptional activation of glucose-responsive enhancers in the insulin gene in a dose-dependent manner via PDZ domain-mediated interactions with E2A transcription factors. Here we report that the pancreatic overexpression of Bridge-1 in transgenic mice reduces insulin gene expression and results in insulin deficiency and severe diabetes. Dysregulation of Bridge-1 signaling increases pancreatic apoptosis with a reduction in the number of insulin-expressing pancreatic β-cells and an expansion of the complement of glucagon-expressing pancreatic α-cells in pancreatic islets. Increased expression of Bridge-1 alters pancreatic islet, acinar, and ductal architecture and disrupts the boundaries between endocrine and exocrine cellular compartments in young adult but not neonatal mice, suggesting that signals transduced through this coactivator may influence postnatal pancreatic islet morphogenesis. Signals mediated through the coactivator Bridge-1 may regulate both glucose homeostasis and pancreatic β-cell survival. We propose that coactivator dysfunction in pancreatic β-cells can limit insulin production and contribute to the pathogenesis of diabetes.


2021 ◽  
Vol 22 (9) ◽  
pp. 4379
Author(s):  
Cheng-Chin Huang ◽  
Ching-Yao Yang ◽  
Chin-Chuan Su ◽  
Kai-Min Fang ◽  
Cheng-Chieh Yen ◽  
...  

4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Angel Nadal ◽  
Talia Boronat-Belda ◽  
Ivan Quesada ◽  
Esther Fuentes ◽  
Jan-Ake Gustafsson ◽  
...  

Abstract Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide. It is used as the base compound in the manufacture of polycarbonate plastics, epoxies and resins. Humans are consistently exposed to BPA and consistently it has been detected in the majority of individuals examined. Experimental research in animals, as well as human epidemiological studies, converge to conclude that BPA is a risk factor for the development of type 2 diabetes. In previous studies we have demonstrated that the exposure to BPA during embryonic development promote an increment of pancreatic β-cell mass. This was correlated with increased β-cell division and altered global gene expression in pancreatic β-cells. The aim of this work was to determinate whether ERβ was involved in the in the β-cell mass and proliferation increment observed in male mice offspring. ERβ+/- pregnant mice were treated with vehicle or BPA (10 μg/kg/day) from day 9 to 16 of gestation. Offspring pancreatic β-cell mass was measured at postnatal day 0 (P0) and 30 (P30). For ex vivo experiments Wild-type (WT) and ERβ-/- neonates as well as adult male and female mice were used. For in vitro, single islets cells were cultured for 48 h in the presence of 10 μmol/L BrdU, and vehicle, BPA (1, 10, 100 nM) or the specific ERβ agonist WAY200070 (1, 10, 100 nM). β-cell proliferation rate was quantified as the percentage of BrdU-positive pancreatic β-cells. In vivo exposure to BPA during pregnancy promoted an increment of pancreatic β-cell mass and proliferation in WT mice at P30 which was absent in ERβ -/- mice. In order to explore if these changes were related to a direct action of BPA on pancreatic β-cell division we performed a series of ex vivo experiments. Augmented β-cell proliferation rate was observed in BPA-exposed β-cells isolated from both adult male and female WT animals in comparison to controls. The increment was significant at all BPA doses tested. The effect was imitated by the selective ERβ agonist, WAY200070, and was abolished in cells from ERβ-/- mice. We also explored the effects of BPA in pancreatic β-cells from neonates and found an increment in BPA-exposed cells compared to controls, although the difference was only significant at the dose of 1 nM. A similar effect was observed in neonate cells treated with WAY200070 (10 nM). The effects on β-cell replication were abolished in cells from ERβ-/- neonate mice treated either with BPA or WAY200070. Our findings suggest that BPA modulate pancreatic β-cell growth and mass in an ERβ-dependent manner. This could have important implications for metabolic programming of T2DM. Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) grants BPU2017-86579-R (AN) and BFU2016-77125-R (IQ); Generalitat Valenciana PROMETEO II/2015/016 (AN). CIBERDEM is an initiative of the Instituto de Salud Carlos III.


Sign in / Sign up

Export Citation Format

Share Document