scholarly journals A Pin-on-Disk Experimental Set-up for Vibrational Smoothing of Dry Friction

PAMM ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 275-276 ◽  
Author(s):  
Simon Kapelke ◽  
Wolfgang Seemann
PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 375-376
Author(s):  
Simon Kapelke ◽  
Lukas J. Oestringer ◽  
Wolfgang Seemann
Keyword(s):  
Set Up ◽  

PAMM ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 253-254 ◽  
Author(s):  
Simon Kapelke ◽  
Wolfgang Seemann

2006 ◽  
Vol 113 ◽  
pp. 415-419
Author(s):  
Czesław Pakowski ◽  
Tomasz J. Kałdoński ◽  
Tadeusz Kałdoński

In the article a continuous method for measurement of wear under conditions of technically dry friction of tribological kinematic pairs of the type pin–on–disk of T–11 tester, as an example is presented. Also taken up was a test of an evolved simple method for evaluation of correction on the participation of thermal expansion in size change of a frictional kinematic pair. The analysis of obtained results showed the existence of correlation between total experimental wear and analytical value of total wear (decrease of linear dimension of pin).


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2700-2705
Author(s):  
XIAO TIAN ◽  
JIANGANG NIU ◽  
CUIBIAO WANG

The friction and wear of silicon nitride ( Si 3 N 4) against silicon nitride ( Si 3 N 4) and zirconia (Y–TZP) and chilled cast iron and Alumina sliding under dry friction at room temperature conditions were investigated with pin-on-disk tribometer at sliding speed of 0.56ms-1 and normal load of 50N, 80N, respectively. Based on the variety regulation of the wear maps, the wear mechanisms of the two couples were analyzed. Get the result of friction coefficient and maps of wear Rate of the Pin and the Disk. The results of comparing this couple is Si 3 N 4/ chilled cast iron < Si 3 N 4/ ZrO 2< Si 3 N 4/ Si 3 N 4< Si 3 N 4/ Al 2 O 3.


Author(s):  
Kanao Fukuda ◽  
Joichi Sugimura

In this study, trace oxygen and water as impurities in experimental gas environments were reduced to less than 10 ppb to eliminate their influences on the tribological properties. A pin-on-disk apparatus in an ultra-high vacuum vessel equipped with a gas filtering system enabled pure experimental gas environments. Dry friction tests clarified that the tribological properties of pure iron in ultra-high vacuum and argon were similar to each other. On the other hand, friction coefficients obtained in hydrogen and nitrogen were considerably lower than those obtained in ultra-high vacuum and argon. Specific wear rates of pin and disk were close to each other in ultra-high vacuum, argon and hydrogen while those took very different values in nitrogen. Hydrogen influenced the tribological properties of pure iron to some extent but the influences were not as much as that of nitrogen.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Antoszewski Bogdan ◽  
Evin Emil ◽  
Audy Jaromír

Recent advances in the commercial exploitation of electrospark coatings have focused on improving surface roughness by depositing Ti, Mo, V, or W over an interlayer of Cu, Sn, Pb, or Cd on the top of a tool steel material. This paper presents results of a systematic pin-on-disk experimental study of different type bilayer coatings (Cu–Sn/bronze, bottom layer; Ti and Mo, top layer) deposited on a Type 45 steel. The results are discussed in terms of friction coefficients obtained under different dry-friction conditions (speeds ranging from 0.3m∕sto0.8m∕s, and pressures ranging from 10Nto40N). An additional focus is on scuffling resistance of faces in friction, microhardness and surface roughness of coated items, and the competitive advantage of using advanced surface coatings.


2007 ◽  
Vol 129 (4) ◽  
pp. 829-835 ◽  
Author(s):  
D. Richard ◽  
I. Iordanoff ◽  
Y. Berthier ◽  
M. Renouf ◽  
N. Fillot

This paper presents an overview of a discrete element method approach to dry friction in the presence of a third body. Three dimensional computer simulations have been carried out to show the influence of the third body properties (and more specifically their adhesion) on friction coefficient and profiles of dissipated power. Simple interaction laws and a cohesive contact are set up to uncouple the key parameters governing the contact rheology. The model is validated through a global energy balance. As it is shown that dynamic friction coefficient can be explained only in terms of local energy dissipation, this work also emphasizes the fact that mechanism effects and third body rheology have important consequences on the energy generation and dissipation field. Therefore, asymmetries can arise and the surface temperature of first bodies can be significantly different even for the same global friction coefficient value. Such investigations highlight the fact that friction coefficient cannot be considered in the same way at the mechanism scale as at the contact scale where the third body plays a non-negligible role, although it has been neglected for years in thermal approaches to study of surfaces in contact.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3127 ◽  
Author(s):  
Xiaojie Wang ◽  
Xiumin Yao ◽  
Hui Zhang ◽  
Xuejian Liu ◽  
Zhengren Huang

Mesocarbon microbead–silicon carbide (MCMB–SiC) composites with 0–30 wt % MCMBs were prepared by pressureless sintering (PLS) method at 2200 °C in Ar. The microstructure and tribological properties of the prepared composites were investigated. The results show that there was a finer grain size of SiC with the increase in MCMB content because MCMBs hinder the growth of SiC grains. The hardness of the composites decreased with increasing MCMB content, whereas the fracture toughness fluctuated showing a complex trend. The tribological properties of the composites under dry friction conditions were evaluated using the pin-on-disk method against a SiC counterpart. We found that the tribological properties of the samples were influenced by the oxide film or lubricating film that formed during the wear process on wear surfaces. Different wear mechanisms were found to be associated with differing MCMB contents.


Author(s):  
Ludek Pesek ◽  
Pavel Snabl ◽  
Vitezslav Bula

Abstract The experimental set-up for studying dynamical behaviour of the bladed wheel with pre-stressed dry-friction contacts in tie-bosses was built. The numerical solution of the turbine bladed wheel with tie-bosses based on 3D finite element method with surface to surface dry friction contact model is proposed. Comparison of experimental and numerical results of dynamical behaviour and damping estimation of our bladed wheel design yielded a reasonable agreement. Due to dry friction contacts and non-linear solution of 3D FE model it, however, leads to HPC computations and long computation times. The contribution deals with description of proposed computational strategy for damping evaluation and achieved results, too.


Sign in / Sign up

Export Citation Format

Share Document