Development of a mass spectrometry based detection method for the mitochondrion-derived peptide MOTS-c in plasma samples for doping control purposes

2019 ◽  
Vol 33 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Andre Knoop ◽  
Andreas Thomas ◽  
Mario Thevis
2020 ◽  
Vol 17 (1) ◽  
pp. 31-39
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
Magali Benjamim de Araújo

Background:: Tibolone is a synthetic steroid commercialized by Organon under the brand name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator (STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract, endometrium, bone and cardiovascular system. Aims:: This work aims to (1) present an overview of important published literature on existing methods for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics and pharmaceutical formulations analysis of tibolone and its metabolites. Results and conclusions: : The major analytical method described for the analysis of tibolone in pharmaceutical formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet (UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of tibolone and/or its metabolites in biological fluids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Narine M. Tonoyan ◽  
Vitaliy V. Chagovets ◽  
Natalia L. Starodubtseva ◽  
Alisa O. Tokareva ◽  
Konstantin Chingin ◽  
...  

AbstractUterine fibroids (UF) is the most common (about 70% cases) type of gynecological disease, with the recurrence rate varying from 11 to 40%. Because UF has no distinct symptomatology and is often asymptomatic, the specific and sensitive diagnosis of UF as well as the assessment for the probability of UF recurrence pose considerable challenge. The aim of this study was to characterize alterations in the lipid profile of tissues associated with the first-time diagnosed UF and recurrent uterine fibroids (RUF) and to explore the potential of mass spectrometry (MS) lipidomics analysis of blood plasma samples for the sensitive and specific determination of UF and RUF with low invasiveness of analysis. MS analysis of lipid levels in the myometrium tissues, fibroids tissues and blood plasma samples was carried out on 66 patients, including 35 patients with first-time diagnosed UF and 31 patients with RUF. The control group consisted of 15 patients who underwent surgical treatment for the intrauterine septum. Fibroids and myometrium tissue samples were analyzed using direct MS approach. Blood plasma samples were analyzed using high performance liquid chromatography hyphened with mass spectrometry (HPLC/MS). MS data were processed by discriminant analysis with projection into latent structures (OPLS-DA). Significant differences were found between the first-time UF, RUF and control group in the levels of lipids involved in the metabolism of glycerophospholipids, sphingolipids, lipids with an ether bond, triglycerides and fatty acids. Significant differences between the control group and the groups with UF and RUF were found in the blood plasma levels of cholesterol esters, triacylglycerols, (lyso) phosphatidylcholines and sphingomyelins. Significant differences between the UF and RUF groups were found in the blood plasma levels of cholesterol esters, phosphotidylcholines, sphingomyelins and triacylglycerols. Diagnostic models based on the selected differential lipids using logistic regression showed sensitivity and specificity of 88% and 86% for the diagnosis of first-time UF and 95% and 79% for RUF, accordingly. This study confirms the involvement of lipids in the pathogenesis of uterine fibroids. A diagnostically significant panel of differential lipid species has been identified for the diagnosis of UF and RUF by low-invasive blood plasma analysis. The developed diagnostic models demonstrated high potential for clinical use and further research in this direction.


2012 ◽  
Vol 71 ◽  
pp. 193-197 ◽  
Author(s):  
E. Galano ◽  
M. Fidani ◽  
F. Baia ◽  
L. Palomba ◽  
G. Marino ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 938-946 ◽  
Author(s):  
Cristian Arsene ◽  
Dirk Schulze ◽  
Anita Röthke ◽  
Mario Thevis ◽  
André Henrion

2021 ◽  
Author(s):  
Hsieh Chen ◽  
Sehoon Chang ◽  
Gawain Thomas ◽  
Wei Wang ◽  
Afnan Mashat ◽  
...  

Abstract We are developing new classes of barcoded advanced tracers, which, compared to present commercial offerings, can be optically detected in an automated fashion. The eventual goal for the advanced tracers is to deploy cost-effective, ubiquitous, long-term, and full-field tracer tests in supporting large-scale waterflooding optimization for improved oil recovery. In this paper, we compare model predictions to breakthrough data from two field tests of advanced tracers in a pilot during water alternating gas (WAG) cycles, where gas tracer tests have recently been performed as well. Two advanced tracer injections were performed at the test site. For the first injection, only a dipicolinic acid based advanced tracer (DPA) was injected. For the second injection, DPA and a phenanthroline- based advanced tracer, 4,7-bis(sulfonatophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BSPPDA), was injected in conjunction with a commercially available fluorobenzoic acid-based tracer (FBA) to benchmark their performance. Produced water samples were collected weekly for tracer analysis. Both newly developed 2D-high performance liquid chromatography/time-resolved fluorescence optical detection method (2D-HPLC/TRF) and liquid chromatography-mass spectrometry (LC-MS) were used to construct the breakthrough curves for the advanced tracers. In parallel, gas chromatography-mass spectrometry (GC-MS) was used to detect FBA tracer. Gas tracer tests have been performed on the same field. Since DPA, BSPPDA and FBA tracers were water tracers as designed, they were expected to appear in between gas tracer breakthroughs, and we observed exactly that for BSPPDA and FBA. Unexpectedly, the DPA predominantly appeared along with gas tracer breakthroughs, suggesting its favorable compatibility with the gas phase. We suspect the presence of some gas components rendered the medium more acidic, which likely protonates DPA molecules, thereby alters its hydrophilicity. A wealth of information could be gathered from the field tests. First, all tracers survived not only the harsh reservoir conditions but also the irregular WAG injections. Their successful detection from the producers suggested robustness of these materials for reservoir applications. Second, the breakthrough curves of the BSPPDA tracers using optical detection method were very similar to those of FBA tracers detected by GC-MS, substantiating the competency of our in-house materials and detection methods to the present commercial offerings. Finally, even though DPA has passed prior lab tests as a good water tracer, its high solubility to gas phase warrants further investigation. This paper summarizes key results from two field trials of the novel barcoded advanced tracers, of which both the tracer materials and detection methods are new to the industry. Importantly, the two co- injected advanced tracers showed opposite correlations to the gas tracers, highlighting the complex physicochemical interactions in reservoir conditions. Nevertheless, the information collected from the field trials is invaluable in enabling further design and utilization of the advanced tracers in fulfilling their wonderful promises.


Author(s):  
Aslam Burhan ◽  
Bhavin Vyas

<p><strong>Objective: </strong>To develop and validate simple, sensitive and selective ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) method for quantification of rifampicin (RIF) in rat plasma and its application to pharmacokinetics study.</p><p><strong>Methods: </strong>Precipitation method was used for the extraction of plasma samples, an aliquot of 25 µl plasma samples was extracted using acetonitrile precipitation technique. Chromatographic separation was performed usingWaters Acquity<sup>TM</sup>UPLC columns, BEH C18 (50 mm× 2.1 mm, 1.7 µm) by a gradient mixture of acetonitrile and water (both containing 0.1 % formic acid) as a mobile phase at the flow rate of 0.7 ml/min.The analyte was protonated in the positive ESI (electrospray ionization interface) and detected in MRM (multiple reactions monitoring) modes using the transition m/z 308.60-455.30.</p><p><strong>Results: </strong>The method had a short chromatography run time of 1.8 min with improved sensitivity over existing methods. Calibration curves been linear over the wide range of 1.97-5047.00 ng/ml. The between and within-batch precision and accuracy of the method was determined by using 4 quality control samples; the highest %CV observed was10.11. The mean recovery values are 74.26, 82.77 and 101.73 at low, medium and high-quality control levels; respectively.</p><p><strong>Conclusion: </strong>It was concluded that the developed and validated UPLC-MS/MS method was sensitive,specific, precise, linear, and rapid. Therefore, the method can be used for quantification of RIFin rat plasma with various advantages over the reported methods. RIF is widely recommended by US-FDAguidance for industry on drug interaction studies and the developed method can be used to explore drug interaction studies in drug discovery and development.</p>


Sign in / Sign up

Export Citation Format

Share Document