9‐2: Manufacturing Process for Mass Production of Micro‐LED Displays and High‐Speed and High‐Yield Laser Lift‐Off Systems

2020 ◽  
Vol 51 (1) ◽  
pp. 100-103
Author(s):  
Koichi Kajiyama ◽  
Yoshikazu Suzuki ◽  
Takafumi Hirano ◽  
Yoshikatu Yanagawa ◽  
Koichiro Fukaya ◽  
...  
2021 ◽  
Author(s):  
Haochen Han ◽  
Yong Zhang ◽  
Jia Chen ◽  
Qi Sun ◽  
Zhimeng Fang ◽  
...  

Abstract High-speed wired drill pipe and its corresponding communication technology not only can achieve high-speed transmission rate and high-capacity, but also can realize real-time monitoring and dual-way communication in whole section, which can prevent downhole problems effectively. As a series system, the homogeneity and robustness of these wired drill pipes are crucial. This paper focuses on how to overcome the difficulty in manufacturing process of information drill pipe and complete the validation test. In order to guarantee the quality of information drill pipe and satisfy the technological requirements of mass production, we optimize the manufacturing process and put forward reasonable test techniques. The optimizations of manufacturing process include the analysis on constant tension of pressure pipe, quantitative cutting pipe and perforation in pipe nozzle. The testing techniques includes magnetic coupling coil impedance test, high pressure test, communication performance test of both single pipe and series system. The test result can be judged and evaluated by the attenuation value of the signal attenuation test and the signal reflection waveform as well as sealing reliability. With the help of the optimization of the manufacturing process and the application of new tooling, the quality and robustness of information drill pipe is improved obviously. Pass rate in primary assembly is increased from 70% to 92%. After the second assembly, pass rate can be increased to 99.5%. Besides, the work efficiency is greatly improved and the process requirements of mass production are satisfied. The validation test can screen out the drill pipe with poor quality and performance effectively thus to improve the reliability of the whole system. By means of the improvement of manufacturing and the validation test, the comprehensive pass rate of information drill pipes is increased from 84% to 95%. During three field tests in Jilin and Daqing Oilfield, the information drill pipes functioned well and accomplished all the test tasks successfully. High-speed wired drill pipe can improve the downhole data transmission on a large margin. The theorical transmission rate can be up to 100 kbps, 10,000 times as much as the traditional mud impulse telemetry. The manufacturing optimization and test technology can guarantee the performance and realize downhole data highway.


Nano Research ◽  
2021 ◽  
Author(s):  
Emma N. Welbourne ◽  
Tarun Vemulkar ◽  
Russell P. Cowburn

AbstractSynthetic antiferromagnetic (SAF) particles with perpendicular anisotropy display a number of desirable characteristics for applications in biological and other fluid environments. We present an efficient and effective method for the patterning of ultrathin Ruderman-Kittel-Kasuya-Yoshida coupled, perpendicularly magnetised SAFs using a combination of nanosphere lithography and ion milling. A Ge sacrificial layer is utilised, which provides a clean and simple lift-off process, as well as maintaining the key magnetic properties that are beneficial to target applications. We demonstrate that the method is capable of producing a particularly high yield of well-defined, thin film based nanoparticles.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2011 ◽  
Vol 46 (5) ◽  
pp. 716-721 ◽  
Author(s):  
H. Ghorbani ◽  
A.M. Rashidi ◽  
S. Rastegari ◽  
S. Mirdamadi ◽  
M. Alaei

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Nguyen Thi Linh Tuyen ◽  
Le Quan Nghiem ◽  
Nguyen Duc Tuan ◽  
Phuoc Huu Le

The development of new drugs that combine active ingredients for the treatment hypertension is critically essential owing to its offering advantages for both patients and manufacturers. In this study, for the first time, detailed development of a scalable process of film-coated bi-layer tablets containing sustained-release metoprolol succinate and immediate-release amlodipine besylate in a batch size of 10,000 tablets is reported. The processing parameters of the manufacturing process during dry mixing-, drying-, dry mixing- completion stages were systematically investigated, and the evaluation of the film-coated bi-layer tablet properties was well established. The optimal preparation conditions for metoprolol succinate layer were 6 min- dry mixing with a high-speed mixer (120 rpm and 1400 rpm), 30-min drying with a fluid bed dryer, and 5-min- mixing completion at 25 rpm. For the preparation of amlodipine besylate layer, the optimal dry-mixing time using a cube mixer (25 rpm) was found to be 5 min. The average weight of metoprolol succinate layers and bi-layer tablets were controlled at 240–260 mg and 384–416 mg, respectively. Shewhart R chart and X¯ charts of all three sampling lots were satisfactory, confirming that the present scalable process was stable and successful. This study confirms that the manufacturing process is reproducible, robust; and it yields a consistent product that meets specifications.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


2003 ◽  
Vol 11 (3) ◽  
pp. 533 ◽  
Author(s):  
Jacques Angelé ◽  
Alain Boissier ◽  
Sylvain Lallemant ◽  
François Leblanc ◽  
Bertrand Pécout ◽  
...  

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4625-4630 ◽  
Author(s):  
JINYI LEE ◽  
JISEONG HWANG ◽  
SEHO CHOI

A scan type magnetic camera was proposed to satisfy the following demands: to obtain high speed quantitative magnetic flux leakage (MFL) distribution with homogeneous lift-off by using 2-dimensionally arrayed high sensitivity magnetic sensors; to concentrate the MFL; and to ignore the residual magnetization and magnetic hysteresis by using a magnetic fluid lens. The magnetic field distribution (MFD) image obtained by using the scan type magnetic camera is inclined to the scanning direction (x-direction) because of the poles of the magnetizer. Also, the image shows a homogeneous trend relative to the x-direction, but there are small waves in the distribution in the sensor arraying direction (y-direction). The crack information in the MFD image can be extracted using image processing. The first and second derivatives of both x and y are used in this processing. These are "1st derivative of x, ∂B/∂x", "1st derivative of y, ∂B/∂y", "2nd derivative of x, ∂2B/∂x2", "2nd derivative of y, ∂2B/∂y2", and "2nd derivative of x and y, ∂2B/∂x∂y". The ∂B/∂x distribution shows the existence of the crack. Also, the crack volume can be evaluated quantitatively, regardless of the crack direction, by using ∂B/∂x and a cross type magnetic coil.


Sign in / Sign up

Export Citation Format

Share Document