Cost-effective high-yield manufacturing process of integrated passive devices (IPDs) for RF and microwave application

Author(s):  
Cong Wang ◽  
Won Sang Lee ◽  
Nam Young Kim
2017 ◽  
Vol 6 (04) ◽  
pp. 5347 ◽  
Author(s):  
Omar B. Ahmed* ◽  
Anas S. Dablool

Several methods of Deoxyribonucleic acid (DNA) extraction have been applied to extract bacterial DNA. The amount and the quality of the DNA obtained for each one of those methods are variable. The study aimed to evaluate bacterial DNA extraction using conventional boiling method followed by alcohol precipitation. DNA extraction from Gram negative bacilli was extracted and precipitated using boiling method with further precipitation by ethanol. The extraction procedure performed using the boiling method resulted in high DNA yields for both E. coli and K. pneumoniae bacteria in (199.7 and 285.7μg/ml, respectively) which was close to control method (229.3 and 440.3μg/ml). It was concluded that after alcohol precipitation boiling procedure was easy, cost-effective, and applicable for high-yield quality of DNA in Gram-negative bacteria.


1999 ◽  
Vol 6 (4) ◽  
pp. 332-335 ◽  
Author(s):  
Jennifer A Crocket ◽  
Eric YL Wong ◽  
Dale C Lien ◽  
Khanh Gia Nguyen ◽  
Michelle R Chaput ◽  
...  

OBJECTIVE: To evaluate the yield and cost effectiveness of transbronchial needle aspiration (TBNA) in the assessment of mediastinal and/or hilar lymphadenopathy.DESIGN: Retrospective study.SETTING: A university hospital.POPULATION STUDIED: Ninety-six patients referred for bronchoscopy with computed tomographic evidence of significant mediastinal or hilar adenopathy.RESULTS: Ninety-nine patient records were reviewed. Three patients had two separate bronchoscopy procedures. TBNA was positive in 42 patients (44%) and negative in 54 patients. Of the 42 patients with a positive aspirate, 40 had malignant cytology and two had cells consistent with benign disease. The positive TBNA result altered management in 22 of 40 patients with malignant disease and one of two patients with benign disease, thereby avoiding further diagnostic procedures. The cost of these subsequent procedures was estimated at $27,335. No complications related to TBNA were documented.CONCLUSIONS: TBNA is a high-yield, safe and cost effective procedure for the diagnosis and staging of bronchogenic cancer.


Vaccine ◽  
2021 ◽  
Author(s):  
Ahd Hamidi ◽  
Femke Hoeksema ◽  
Pim Velthof ◽  
Angelique Lemckert ◽  
Gert Gillissen ◽  
...  

Author(s):  
Mohd Azril Riduan ◽  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Afifudin Habulat ◽  
Danial Nuruddin Azlan Raofuddin ◽  
...  

Background: Greener epoxidation by using vegetable oil to create an eco-friendly epoxide is being studied because it is a more cost-effective and environmentally friendly commodity that is safer than non-renewable materials. The aim of this research is to come up with low-cost solutions for banana trunk acoustic panels with kinetic modelling of epoxy-based palm oil. Method: In this study, the epoxidation of palm oleic acid was carried out by in situ performic acid to produce epoxidized palm oleic acid. Results: Banana trunk acoustic panel was successfully innovated based on the performance when the epoxy was applied. Lastly, a mathematical model was developed by using the numerical integration of the 4th order Runge-Kutta method, and the results showed that there is a good agreement between the simulation and experimental data, which validates the kinetic model. Conclusion: Overall, the peracid mechanism was effective in producing a high yield of epoxy from palm oleic acid that is useful for the improvement of acoustic panels based on the banana trunk.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Avtar Singh ◽  
Amanjot Kaur ◽  
Anita Dua ◽  
Ritu Mahajan

Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 774 ◽  
Author(s):  
Wendy Rusli ◽  
Alexander Jackson ◽  
Alexander van Herk

Vesicle templated emulsion polymerization is a special form of emulsion polymerization where the polymer is grown from the outside of the vesicle, leading to nanocapsules. Cost effective nanocapsules synthesis is in high demand due to phasing out of older methods for capsule synthesis. Although the first indications of this route being successful were published some 10 years ago, until now a thorough understanding of the parameters controlling the morphologies resulting from the template emulsion polymerization was lacking. Most often a mixture of different morphologies was obtained, ranging from solid particles to pro-trusion structures to nanocapsules. A high yield of nanocapsules was not achieved until now. In this paper, the influence of initial vesicle dispersion, choice of the Reversible Addition-Fragmentation chain Transfer (RAFT) species and oligomer, monomer and crosslinker have been investigated. It turns out that good initial vesicle dispersion, molecular control of the RAFT process, a not too hydrophobic monomer and some crosslinking is needed to result in high yield of nanocapsules. In previous work, the level of RAFT control was often suboptimal and not properly verified and although nanocapsules were shown, other morphologies were also present. We now believe we have a full understanding of vesicle templated nanocapsules synthesis, relevant to many applications.


2021 ◽  
Author(s):  
David Choy Buentello ◽  
Lina Sophie Koch ◽  
Grissel Trujillo-de Santiago ◽  
Mario Moisés Alvarez ◽  
Kerensa Broersen

The use of organoids has become increasingly popular recently due to their self-organizing abilities, which facilitate developmental and disease modeling. Various methods have been described to create embryoid bodies (EBs) generated from embryonic or pluripotent stem cells but with varying levels of differentiation success and producing organoids of variable size. Commercial ultra-low attachment (ULA) V-bottom well plates are frequently used to generate EBs. These plates are relatively expensive and not as widely available as standard concave well plates. Here, we describe a cost-effective and low labor-intensive method that creates homogeneous EBs at high yield in standard V- and U-bottom well plates by applying an anti-adherence solution to reduce surface attachment, followed by centrifugation to enhance cellular aggregation. We also explore the effect of different seeding densities, in the range of 1 to 11 ×10 3 cells per well, for the fabrication of neuroepithelial EBs. Our results show that the use of V-bottom well plates briefly treated with anti-adherent solution (for 5 min at room temperature) consistently yields functional neural EBs in the range of seeding densities from 5 to 11×10 3 cells per well. A brief post-seeding centrifugation step further enhances EB establishment. EBs fabricated using centrifugation exhibited lower variability in their final size than their non-centrifuged counterparts, and centrifugation also improved EB yield. The span of conditions for reliable EB production is narrower in U-bottom wells than in V-bottom wells (i.e., seeding densities between 7×10 3 and 11×10 3 and using a centrifugation step). We show that EBs generated by the protocols introduced here successfully developed into neural organoids and expressed the relevant markers associated with their lineages


2021 ◽  
pp. 8-19
Author(s):  
Gautam Degweker ◽  
Arvind Lali

Rapid and high yield conversion of xylose to ethanol remains a signi cant bottleneck in the cost-effective production of ethanol using mixed sugars derived from lignocellulosic biomass (LBM). The present study attempts to circumvent this by separate continuous fermentation of glucose and xylose using high cell densities of a Saccharomyces cerevisiae mutant (ICT-1) and a Scheffersomyces stipitis mutant (M1CD), respectively with the help of external micro ltration membrane assisted cell recycle. Different cell densities and aeration rates for xylose fermentation were studied for optimizing continuous fermentation. Consistent high ethanol yields and productivities of 0.46 g/g and 5.19 g/L/h with glucose; and 0.38 g/g and 1.62 g/L/h with xylose; were achieved in simple media. This provided an average ethanol yield of 0.44 g/g on combined sugars, and average productivity of 3.4 g/L/h which is higher than typical molasses-based batch ethanol fermentation. The study thus highlights the potential of high cell density recycle strategy as an effective approach for separate ethanol fermentation of LBM derived sugars.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


Sign in / Sign up

Export Citation Format

Share Document