Spatial Variation of In Vitro Starch and Protein Digestibility in White Wheat Bread

2018 ◽  
Vol 70 (5-6) ◽  
pp. 1800025 ◽  
Author(s):  
Jose Alvarez-Ramirez ◽  
Eva Rodriguez-Huezo ◽  
Monica Meraz ◽  
Samuel Garcia-Diaz ◽  
Pamela C. Flores-Silva ◽  
...  
Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1923 ◽  
Author(s):  
Ajay Desai ◽  
Tang Beibeia ◽  
Margaret Brennan ◽  
Xinbo Guo ◽  
Xin-An Zeng ◽  
...  

This study investigated protein, amino acid, fatty acid composition, in vitro starch and protein digestibility, and phenolic and antioxidant composition of bread fortified with salmon fish (Oncorhynchus tschawytscha) powder (SFP). The proximate composition in control and SFP breads ranged between (34.00 ± 0.55–31.42 ± 0.73%) moisture, (13.91 ± 0.19–20.04 ± 0.10%) protein, (3.86 ± 0.02–9.13 ± 0.02%) fat, (2.13 ± 0.02–2.42 ± 0.09%) ash, (80.10 ± 0.018–68.42 ± 0.11%) carbohydrate, and (410.8 ± 0.18–435.96 ± 0.36 kcal) energy. The essential amino acids of the control and SFP breads ranged between 261.75 ± 9.23 and 306.96 ± 6.76 mg/g protein, which satisfies the score recommended by FAO/WHO/UNU (2007). Protein digestibility of the products was assessed using an in vitro assay. The protein digestibility, comma, amino acid score, essential amino acid index, biological value, and nutritional index ranged between 79.96 ± 0.65–80.80 ± 0.99%, 0.15 ± 0.06–0.42 ± 0.06%, 62.51 ± 1.15–76.68 ± 1.40%, 56.44 ± 1.05–71.68 ± 1.10%, 8.69 ± 0.10–15.36 ± 0.21%, respectively. Control and SFP breads contained 60.31 ± 0.21–43.60 ± 0.35 g/100 g total fatty acids (saturated fatty acids) and 13.51 ± 0.10–17.00 ± 0.09 g/100 g total fatty acids (polyunsaturated fatty acids), and SFP breads fulfil the ω-6/ω-3 score recommended by food authority. There was a significant effect of SFP on bread-specific volume, crumb color, and textural properties. The in vitro starch digestibility results illustrate that the incorporation of SFP into wheat bread decreased the potential glycemic response of bread and increased the antioxidant capacity of bread. In conclusion, this nutrient-rich SFP bread has the potential to be a technological alternative for the food industry.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 736 ◽  
Author(s):  
Yoghatama Zanzer ◽  
Ângela Batista ◽  
Anestis Dougkas ◽  
Juscelino Tovar ◽  
Yvonne Granfeldt ◽  
...  

The established effect of turmeric and its curcuminoids on appetite sensations was previously shown to be mediated by gut hormones release. In in vitro and preclinical studies, curcumin was shown to induce GLP-1 secretion and improve postprandial glycemia. In humans, consumption of 220 mL turmeric-based beverage (TUR, containing 185 mg gallic acid equivalents (GAE)) prior to white wheat bread (WWB, 50 g available carbohydrate) reduced early postprandial glucose levels and induced peptide tyrosine–tyrosine (PYY) release, as well as lowered ‘desire to eat’ and ‘prospective consumption’ in a postprandial setting, compared to control. In the present study, 12 healthy participants (5 men, 7 women) were admitted. An identical beverage was given and consumed prior to isoenergetic (423 kcal) medium-fat (MF) or high-fat (HF) meals. Appetite sensations including perceived ‘hunger’, ‘desire to eat’, ‘satiety’, ‘fullness’, ‘prospective consumption’, and ‘thirst’ were measured using visual analogue scales. MF induced 18% (p = 0.039) higher ‘satiety’ compared to HF. TUR consumption prior to either MF or HF did not modulate the perceived appetite sensations. Whether macronutrient-induced appetite sensations override the actual turmeric effects warrants further investigation.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1337 ◽  
Author(s):  
Patricia Rojas-Bonzi ◽  
Cecilie Toft Vangsøe ◽  
Kirstine Lykke Nielsen ◽  
Helle Nygaard Lærke ◽  
Mette Skou Hedemann ◽  
...  

The relationship between in vitro and in vivo starch digestion kinetics was studied in portal vein catheterised pigs fed breads varying in dietary fibre (DF) content and composition. The breads were a low DF white wheat bread, two high DF whole grain rye breads without and with whole kernels and two experimental breads with added arabinoxylan or oat β-glucan concentrates, respectively. In vitro, samples were collected at 0, 5, 10, 15, 30, 60, 120 and 180 min and the cumulative hydrolysis curve for starch was modelled, whereas the in vivo cumulative absorption models for starch were based on samples taken every 15 min up to 60 min and then every 30 min up to 240 min. The starch hydrolysis rate in vitro (0.07 to 0.16%/min) was far higher than the rate of glucose appearance in vivo (0.017 to 0.023% absorbed starch/min). However, the ranking of the breads was the same in vitro and in vivo and there was a strong relationship between the kinetic parameters.


LWT ◽  
2021 ◽  
Vol 136 ◽  
pp. 110332
Author(s):  
Fatemeh Sardabi ◽  
Mohammad Hossein Azizi ◽  
Hassan Ahmadi Gavlighi ◽  
Ali Rashidinejad

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1639
Author(s):  
Emma Neylon ◽  
Elke K. Arendt ◽  
Emanuele Zannini ◽  
Aylin W. Sahin

Recycling of by-products from the food industry has become a central part of research to help create a more sustainable future. Brewers’ spent grain is one of the main side-streams of the brewing industry, rich in protein and fibre. Its inclusion in bread, however, has been challenging and requires additional processing. Fermentation represents a promising tool to elevate ingredient functionality and improve bread quality. Wheat bread was fortified with spray-dried brewers’ spent grain (BSG) and fermented brewers’ spent grain (FBSG) at two addition levels to achieve “source of fibre” and “high in fibre” claims according to EU regulations. The impact of BSG and FBSG on bread dough, final bread quality and nutritional value was investigated and compared to baker’s flour (BF) and wholemeal flour (WMF) breads. The inclusion of BSG and FBSG resulted in a stronger and faster gluten development; reduced starch pasting capacity; and increased dough resistance/stiffness. However, fermentation improved bread characteristics resulting in increased specific volume, reduced crumb hardness and restricted microbial growth rate over time. Additionally, the inclusion of FBSG slowed the release in reducing sugars over time during in vitro starch digestion. Thus, fermentation of BSG can ameliorate bread techno-functional properties and improve nutritional quality of breads.


2020 ◽  
Vol 11 (9) ◽  
pp. 7611-7625
Author(s):  
Kulwa F. Miraji ◽  
Anita R. Linnemann ◽  
Vincenzo Fogliano ◽  
Henry S. Laswai ◽  
Edoardo Capuano

The nutritional contents of rice decreased as grains matured, and pepeta-type processing improves the nutritional properties and in vitro protein digestibility of rice.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1368
Author(s):  
Marbie Alpos ◽  
Sze Ying Leong ◽  
Indrawati Oey

Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.


Sign in / Sign up

Export Citation Format

Share Document