scholarly journals Functional Domains of the LIM Homeodomain Protein Xlim-1 Involved in Negative Regulation, Transactivation, and Axis Formation in Xenopus Embryos

2001 ◽  
Vol 229 (2) ◽  
pp. 456-467 ◽  
Author(s):  
Ichiro Hiratani ◽  
Toshiaki Mochizuki ◽  
Naoko Tochimoto ◽  
Masanori Taira
1999 ◽  
Vol 80 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Giorgio Lagna ◽  
Francesca Carnevali ◽  
Marcella Marchioni ◽  
Ali Hemmati-Brivanlou

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 615
Author(s):  
Achala Fernando ◽  
Chamikara Liyanage ◽  
Afshin Moradi ◽  
Panchadsaram Janaththani ◽  
Jyotsna Batra

Alternative splicing (AS) is tightly regulated to maintain genomic stability in humans. However, tumor growth, metastasis and therapy resistance benefit from aberrant RNA splicing. Iroquois-class homeodomain protein 4 (IRX4) is a TALE homeobox transcription factor which has been implicated in prostate cancer (PCa) as a tumor suppressor through genome-wide association studies (GWAS) and functional follow-up studies. In the current study, we characterized 12 IRX4 transcripts in PCa cell lines, including seven novel transcripts by RT-PCR and sequencing. They demonstrate unique expression profiles between androgen-responsive and nonresponsive cell lines. These transcripts were significantly overexpressed in PCa cell lines and the cancer genome atlas program (TCGA) PCa clinical specimens, suggesting their probable involvement in PCa progression. Moreover, a PCa risk-associated SNP rs12653946 genotype GG was corelated with lower IRX4 transcript levels. Using mass spectrometry analysis, we identified two IRX4 protein isoforms (54.4 kDa, 57 kDa) comprising all the functional domains and two novel isoforms (40 kDa, 8.7 kDa) lacking functional domains. These IRX4 isoforms might induce distinct functional programming that could contribute to PCa hallmarks, thus providing novel insights into diagnostic, prognostic and therapeutic significance in PCa management.


2000 ◽  
Vol 14 (10) ◽  
pp. 1627-1648 ◽  
Author(s):  
Frédérique Gay ◽  
Isabelle Anglade ◽  
Zhiyuan Gong ◽  
Gilles Salbert

2004 ◽  
Vol 64 (9) ◽  
pp. 3046-3051 ◽  
Author(s):  
Chaeyong Jung ◽  
Ran-Sook Kim ◽  
Sang-Jin Lee ◽  
Chihuei Wang ◽  
Meei-Huey Jeng

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 499-507 ◽  
Author(s):  
H. Steinbeisser ◽  
E.M. De Robertis ◽  
M. Ku ◽  
D.S. Kessler ◽  
D.A. Melton

In this study, we compare the effects of three mRNAs-goosecoid, activin and Xwnt-8- that are able to induce partial or complete secondary axes when injected into Xenopus embryos. Xwnt-8 injection produces complete secondary axes including head structures whereas activin and goosecoid injection produce partial secondary axes at high frequency that lack head structures anterior to the auditory vesicle and often lack notochord. Xwnt-8 can activate goosecoid only in the deep marginal zone, i.e., in the region in which this organizer-specific homeobox gene is normally expressed on the dorsal side. Activin B mRNA, however, can turn on goosecoid in all regions of the embryo. We also tested the capacity of these gene products to restore axis formation in embryos in which the cortical rotation was blocked by UV irradiation. Whereas Xwnt-8 gives complete rescue of anterior structures, both goosecoid and activin give partial rescue. Rescued axes including hindbrain structures up to level of the auditory vesicle can be obtained at high frequency even in the absence of notochord structures. The possible functions of Wnt-like and activin-like signals and of the goosecoid homeobox gene, and their order of action in the formation of Spemann's organizer are discussed.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 2987-2996 ◽  
Author(s):  
C. Wylie ◽  
M. Kofron ◽  
C. Payne ◽  
R. Anderson ◽  
M. Hosobuchi ◽  
...  

In previous work, we demonstrated that maternally encoded beta-catenin, the vertebrate homolog of armadillo, is required for formation of dorsal axial structures in early Xenopus embryos (Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., Kintner, C., Yoshida-Noro, C. and Wylie, C. (1994). Cell 79, 791–803). Here we investigated, firstly, the role(s) of beta-catenin in spatial terms, in different regions of the embryo, by injecting beta-catenin mRNA into individual blastomeres of beta-catenin-depleted embryos at the 32 cell stage. The results indicate that beta-catenin can rescue the dorsal axial structures in a non-cell-autonomous way and without changing the fates of the injected cells. This suggests that cells overexpressing beta-catenin send a ‘dorsal signal’ to other cells. This was confirmed by showing that beta-catenin overexpressing animal caps did not cause wild-type caps to form mesoderm, but did cause isolated beta-catenin-deficient marginal zones to form dorsal mesoderm. Furthermore beta-catenin-deficient vegetal masses treated with overexpressing caps regained their ability to act as Nieuwkoop Centers. Secondly, we studied the temporal activity of beta-catenin. We showed that zygotic transcription of beta-catenin starts after the midblastula transition (MBT), but does not rescue dorsal axial structures. We further demonstrated that the vegetal mass does not release a dorsal signal until after the onset of transcription, at the midblastula stage, suggesting that maternal beta-catenin protein is required at or before this time. Thirdly we investigated where, in relationship to other gene products known to be active in axis formation, beta-catenin is placed. We find that BVg1, bFGF, tBR (the truncated form of BMP2/4R), siamois and noggin activities are all downstream of beta-catenin, as shown by the fact that injection of their mRNAs rescues the effect of depleting maternally encoded beta-catenin. Interference with the action of glycogen synthase kinase (GSK), a vertebrate homolog of the Drosophila gene product, zeste white 3 kinase, does not rescue the effect, suggesting that it is upstream.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4615-4622 ◽  
Author(s):  
Ulrich Weihe ◽  
Marco Milán ◽  
Stephen M. Cohen

Apterous is a LIM-homeodomain protein that confers dorsal compartment identity in Drosophila wing development. Apterous activity requires formation of a complex with a co-factor, Chip/dLDB. Apterous activity is regulated during wing development by dLMO, which competes with Apterous for complex formation. Here, we present evidence that complex formation between Apterous, Chip and DNA stabilizes Apterous protein in vivo. We also report that a difference in the ability of Chip to bind the LIM domains of Apterous and dLMO contributes to regulation of activity levels in vivo.


Cell ◽  
2005 ◽  
Vol 120 (6) ◽  
pp. 857-871 ◽  
Author(s):  
Qinghua Tao ◽  
Chika Yokota ◽  
Helbert Puck ◽  
Matt Kofron ◽  
Bilge Birsoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document