Recombination: RNA — A Powerful Tool for Recombination and Regulated Expression of Genes

2005 ◽  
pp. 31-49 ◽  
Author(s):  
Dirk Müller ◽  
Ulf Stahl
1988 ◽  
Vol 85 (11) ◽  
pp. 3845-3849 ◽  
Author(s):  
A. K. Nandi ◽  
R. S. Roginski ◽  
R. G. Gregg ◽  
O. Smithies ◽  
A. I. Skoultchi

2008 ◽  
Vol 74 (11) ◽  
pp. 3419-3425 ◽  
Author(s):  
Christophe Bordi ◽  
Bronwyn G. Butcher ◽  
Qiaojuan Shi ◽  
Anna-Barbara Hachmann ◽  
Joseph E. Peters ◽  
...  

ABSTRACT A Tn7 donor plasmid, pTn7SX, was constructed for use with the model gram-positive bacterium Bacillus subtilis. This new mini-Tn7, mTn7SX, contains a spectinomycin resistance cassette and an outward-facing, xylose-inducible promoter, thereby allowing for the regulated expression of genes downstream of the transposon. We demonstrate that mTn7SX inserts are obtained at a high frequency and occur randomly throughout the B. subtilis genome. The utility of this system was demonstrated by the selection of mutants with increased resistance to the antibiotic fosfomycin or duramycin.


1991 ◽  
Vol 16 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Jean-Luc Evrard ◽  
Colette Jako ◽  
Agn�s Saint-Guily ◽  
Jacques-Henry Weil ◽  
Marcel Kuntz

2021 ◽  
Vol 118 (12) ◽  
pp. e2100825118
Author(s):  
Di Chen ◽  
Arghyashree Roychowdhury-Sinha ◽  
Pragya Prakash ◽  
Xiao Lan ◽  
Wenmin Fan ◽  
...  

Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet. 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhan Zheng ◽  
Jiangmin Xu ◽  
Fujun Wang ◽  
Yongchao Tang ◽  
Zheng Wei ◽  
...  

Lesion mimic mutants (LMMs) are ideal materials for studying programmed cell death and defense response in plants. Here we report investigations on two LMMs (msl-1 and msl-2) from the indica rice cultivar JG30 treated by ethyl methyl sulfone. Both of the mutants showed similar mosaic spot lesions at seedling stage, but they displayed different phenotypes along with development of the plants. At tillering stage, larger orange spots appeared on leaves of msl-2, while only small reddish-brown spots exhibit on leaves of msl-1. At heading stage, the msl-2 plants were completely dead, while the msl-1 plants were still alive even if showed apparent premature senility. For both the mutants, the mosaic spot lesion formation was induced by light; DAB and trypan blue staining showed a large amount of hydrogen peroxide accumulated at the lesion sites, accompanied by a large number of cell death. Consequently, reactive oxygen species were enriched in leaves of the mutants; SOD and CAT activities in the scavenging enzyme system were decreased compared with the wild type. In addition, degraded chloroplasts, decreased photosynthetic pigment content, down-regulated expression of genes associated with chloroplast synthesis/photosynthesis and up-regulated expression of genes related to senescence were detected in the mutants, but the abnormality of msl-2 was more serious than that of msl-1 in general. Genetic analysis and map-based cloning revealed that the lesion mimic and premature senescence traits of both the mutants were controlled by recessive mutated alleles of the SL (Sekiguchi lesion) gene, which encodes the CYP71P1 protein belonging to cytochrome P450 monooxygenase family. The difference of mutation sites and mutation types (SNP-caused single amino acid change and SNP-caused early termination of translation) led to the different phenotypes in severity between msl-1 and msl-2. Taken together, this work revealed that the CYP71P1 is involved in regulation of both premature senescence and cell death in rice, and its different mutation sites and mutation types could cause different phenotypes in terms of severity.


2006 ◽  
Vol 34 (6) ◽  
pp. 1141-1144 ◽  
Author(s):  
D.P. Ramji ◽  
N.N. Singh ◽  
P. Foka ◽  
S.A. Irvine ◽  
K. Arnaoutakis

The regulation of macrophage cholesterol homoeostasis is of crucial importance in the pathogenesis of atherosclerosis, an underlying cause of heart attack and stroke. Several recent studies have revealed a critical role for the cytokine TGF-β (transforming growth factor-β), a key regulator of the immune and inflammatory responses, in atherogenesis. We discuss here the TGF-β signalling pathway and its role in this disease along with the outcome of our recent studies on the action of the cytokine on the expression of key genes implicated in the uptake or efflux of cholesterol by macrophages and the molecular mechanisms underlying such regulation.


2019 ◽  
Vol 7 (8) ◽  
pp. 225 ◽  
Author(s):  
Shao ◽  
Tu ◽  
Wang ◽  
Jiang ◽  
Ma ◽  
...  

Oxidative stress response protects organisms from deleterious effects of reactive oxygen species (ROS), which can damage cellular components and cause disturbance of the cellular homeostasis. Although the defensive biochemical mechanisms have been extensively studied in yeast and other filamentous fungi, little information is available about Aspergillus oryzae. We investigated the effect of two oxidant agents (menadione sodium bisulfite, MSB, and hydrogen peroxide, H2O2) on cellular growth and antioxidant enzyme induction in A. oryzae. Results indicated severe inhibition of biomass and conidia production when high concentration of oxidants was used. Transcriptomic analysis showed an up-regulated expression of genes involved in oxidoreduction, such as catalase, glutathione peroxidase, and superoxide dismutase. In addition, it was observed that oxidative stress stimuli enhanced the expression of Yap1 and Skn7 transcription factors. Further, metabolomic analysis showed that glutathione content was increased in the oxidative treatments when compared with the control. Moreover, the content of unsaturated fatty acid decreased with oxidative treatment accompanying with the down-regulated expression of genes involved in linoleic acid biosynthesis. This study provided a global transcriptome characterization of oxidative stress response in A. oryzae, and can offer multiple target genes for oxidative tolerance improvement via genetic engineering.


Sign in / Sign up

Export Citation Format

Share Document