The Role of Peroxisome Proliferator Activated Receptor α in Peroxisome Proliferation, Physiological Homeostasis, and Chemical Carcinogenesis

Author(s):  
Feank J. Gonzalez
PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Lena Burri ◽  
G. Hege Thoresen ◽  
Rolf K. Berge

PPARαis one of three members of the soluble nuclear receptor family called peroxisome proliferator-activated receptor (PPAR). It is a sensor for changes in levels of fatty acids and their derivatives that responds to ligand binding with PPAR target gene transcription, inasmuch as it can influence physiological homeostasis, including lipid and carbohydrate metabolism in various tissues. In this paper we summarize the involvement of PPARαin the metabolically active tissues liver and skeletal muscle and provide an overview of the risks and benefits of ligand activation of PPARα, with particular consideration to interspecies differences.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 734
Author(s):  
Pietro Antonuccio ◽  
Herbert Ryan Marini ◽  
Antonio Micali ◽  
Carmelo Romeo ◽  
Roberta Granese ◽  
...  

Varicocele is an age-related disease with no current medical treatments positively impacting infertility. Toll-like receptor 4 (TLR4) expression is present in normal testis with an involvement in the immunological reactions. The role of peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor, in fertility is still unclear. N-Palmitoylethanolamide (PEA), an emerging nutraceutical compound present in plants and animal foods, is an endogenous PPAR-α agonist with well-demonstrated anti-inflammatory and analgesics characteristics. In this model of mice varicocele, PPAR-α and TLR4 receptors’ roles were investigated through the administration of ultra-micronized PEA (PEA-um). Male wild-type (WT), PPAR-α knockout (KO), and TLR4 KO mice were used. A group underwent sham operation and administration of vehicle or PEA-um (10 mg/kg i.p.) for 21 days. Another group (WT, PPAR-α KO, and TLR4 KO) underwent surgical varicocele and was treated with vehicle or PEA-um (10 mg/kg i.p.) for 21 days. At the end of treatments, all animals were euthanized. Both operated and contralateral testes were processed for histological and morphometric assessment, for PPAR-α, TLR4, occludin, and claudin-11 immunohistochemistry and for PPAR-α, TLR4, transforming growth factor-beta3 (TGF-β3), phospho-extracellular signal-Regulated-Kinase (p-ERK) 1/2, and nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) Western blot analysis. Collectively, our data showed that administration of PEA-um revealed a key role of PPAR-α and TLR4 in varicocele pathophysiology, unmasking new nutraceutical therapeutic targets for future varicocele research and supporting surgical management of male infertility.


2021 ◽  
Vol 11 (15) ◽  
pp. 7120
Author(s):  
Mirko Pesce ◽  
Irene La Fratta ◽  
Teresa Paolucci ◽  
Alfredo Grilli ◽  
Antonia Patruno ◽  
...  

The beneficial effects of exercise on the brain are well known. In general, exercise offers an effective way to improve cognitive function in all ages, particularly in the elderly, who are considered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glucose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin system is also expressed in the hippocampus, where it stimulates the expression of the neurotrophin brain-derived neurotrophic factor in this area that is associated with learning and memory. In this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of exercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main promoters of the beneficial effects of exercise on the brain.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Jaou-Chen Huang

Peroxisome proliferator-activated receptorδ(PPARδ, also known as PPARβ) has ubiquitous distribution and extensive biological functions. The reproductive function of PPARδwas first revealed in the uterus at the implantation site. Since then, PPARδand its ligand have been discovered in all reproductive tissues, including the gametes and the preimplantation embryos. PPARδin preimplantation embryos is normally activated by oviduct-derived PPARδligand. PPARδactivation is associated with an increase in embryonic cell proliferation and a decrease in programmed cell death (apoptosis). On the other hand, the role of PPARδand its ligand in gamete formation and function is less well understood. This review will summarize the reproductive functions of PPARδand project its potential applications in assisted reproductive technology.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3525-3538 ◽  
Author(s):  
Hong Guo ◽  
Merlijn Bazuine ◽  
Daozhong Jin ◽  
Merry M. Huang ◽  
Samuel W. Cushman ◽  
...  

Lipocalin 2 (Lcn2) has previously been characterized as an adipokine/cytokine playing a role in glucose and lipid homeostasis. In this study, we investigate the role of Lcn2 in adipose tissue remodeling during high-fat diet (HFD)-induced obesity. We find that Lcn2 protein is highly abundant selectively in inguinal adipose tissue. During 16 weeks of HFD feeding, the inguinal fat depot expanded continuously, whereas the expansion of the epididymal fat depot was reduced in both wild-type (WT) and Lcn2−/− mice. Interestingly, the depot-specific effect of HFD on fat mass was exacerbated and appeared more pronounced and faster in Lcn2−/− mice than in WT mice. In Lcn2−/− mice, adipocyte hypertrophy in both inguinal and epididymal adipose tissue was more profoundly induced by age and HFD when compared with WT mice. The expression of peroxisome proliferator-activated receptor-γ protein was significantly down-regulated, whereas the gene expression of extracellular matrix proteins was up-regulated selectively in epididymal adipocytes of Lcn2−/− mice. Consistent with these observations, collagen deposition was selectively higher in the epididymal, but not in the inguinal adipose depot of Lcn2−/− mice. Administration of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone (Rosi) restored adipogenic gene expression. However, Lcn2 deficiency did not alter the responsiveness of adipose tissue to Rosi effects on the extracellular matrix expression. Rosi treatment led to the further enlargement of adipocytes with improved metabolic activity in Lcn2−/− mice, which may be associated with a more pronounced effect of Rosi treatment in reducing TGF-β in Lcn2−/− adipose tissue. Consistent with these in vivo observations, Lcn2 deficiency reduces the adipocyte differentiation capacity of stromal-vascular cells isolated from HFD-fed mice in these cells. Herein Rosi treatment was again able to stimulate adipocyte differentiation to a similar extent in WT and Lcn2−/− inguinal and epididymal stromal-vascular cells. Thus, combined, our data indicate that Lcn2 has a depot-specific role in HFD-induced adipose tissue remodeling.


2013 ◽  
Vol 65 (2) ◽  
pp. 447-453
Author(s):  
N. Lukic ◽  
A. Stankovic ◽  
E. Dincic ◽  
M. Bundalo ◽  
Z. Krsmanovic ◽  
...  

The function of peroxisome proliferator-activated receptor ? (PPAR?) in immune regulation, as well as in antiinflammatory and anti-proliferative actions towards T lymphocytes, has been reported. A potential role of PPARs in multiple sclerosis (MS) was suggested. The aim of this study was to investigate if there is an association of PPAR?-2 Pro12Ala polymorphism with MS in 361 patients from Serbia. The genotype and allele frequencies of Pro12Ala polymorphism were not significantly different between controls and patients, or between females and males. In contrast to controls, we detected a rare Ala/Ala genotype in patients with MS. We found that there is a significant association of Ala/Ala genotype with older age at onset (ANOVA, p=0.07; LSD post-hoc, Ala/Ala vs. Pro/Ala, p=0.03, Ala/Ala vs. Pro/Pro p=0.02). It would be useful to validate our results in other populations, as well as to perform follow-up of the disease progression in regard to PPAR? genotypes.


2021 ◽  
Vol 22 (16) ◽  
pp. 8876
Author(s):  
Pierre Layrolle ◽  
Pierre Payoux ◽  
Stéphane Chavanas

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document