Electrochemical Detection of Glutathione S-Transferase: An Important Enzyme in the Cell Protective Mechanism Against Oxidative Stress

Author(s):  
Manuel C. Martos-Maldonado ◽  
Juan M. Casas-Solvas ◽  
Antonio Vargas-Berenguel ◽  
Luis García-Fuentes
2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 953
Author(s):  
Tamara G. Petrović ◽  
Ana Kijanović ◽  
Nataša Kolarov Kolarov Tomašević ◽  
Jelena P. Gavrić ◽  
Svetlana G. Despotović ◽  
...  

In this paper, we examined how the oxidative status (antioxidant system and oxidative damage) of Bombina variegata larvae changed during the metamorphic climax (Gosner stages: 42—beginning, 44—middle and 46—end) and compared the patterns and levels of oxidative stress parameters between individuals developing under constant water availability (control) and those developing under decreasing water availability (desiccation group). Our results revealed that larvae developing under decreasing water availability exhibited increased oxidative damage in the middle and end stages. This was followed by lower levels of glutathione in stages 44 and 46, as well as lower values of catalase, glutathione peroxidase, glutathione S-transferase and sulfhydryl groups in stage 46 (all in relation to control animals). Comparison between stages 42, 44 and 46 within treatments showed that individuals in the last stage demonstrated the highest intensities of lipid oxidative damage in both the control and desiccation groups. As for the parameters of the antioxidant system, control individuals displayed greater variety in response to changes induced by metamorphic climax than individuals exposed to desiccation treatment. The overall decrease in water availability during development led to increased oxidative stress and modifications in the pattern of AOS response to changes induced by metamorphic climax in larvae of B. variegata.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 181
Author(s):  
Amna Khan ◽  
Adnan Khan ◽  
Sidra Khalid ◽  
Bushra Shal ◽  
Eunwoo Kang ◽  
...  

7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.


2011 ◽  
Vol 31 (6) ◽  
pp. 565-573 ◽  
Author(s):  
M Tutanc ◽  
V Arica ◽  
N Yılmaz ◽  
A Nacar ◽  
I Zararsiz ◽  
...  

Aim: In cyclosporin-A (CsA)-induced toxicity, oxidative stress has been implicated as a potential responsible mechanism. Therefore, we aimed to investigate the protective role of erdosteine against CsA-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Materials and methods: Wistar albino rats were randomly separated into four groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with CsA, group 3 with CsA plus erdosteine, and group 4 with erdosteine alone. Animals were killed and blood samples were analyzed for blood urea nitrogen (BUN), serum creatinine (Cr), uric acid (UA), total protein (TP), and albumin (ALB) levels. Kidney sections were analyzed for malondialdehyde (MDA) and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as for histopathological changes. Results: In the CsA group, MDA, GSH-Px, BUN, and Cr levels were increased. The TP and ALB levels were decreased. These changes had been improved by erdosteine administration. Other biochemical parameters did not show any significant change. Conclusion: These results indicate that erdosteine produces a protective mechanism against CsA-induced nephrotoxicity and suggest a role of oxidative stress in pathogenesis.


2009 ◽  
Vol 189 ◽  
pp. S126 ◽  
Author(s):  
Ondrej Zitka ◽  
Dalibor Huska ◽  
Vojtech Adam ◽  
Ales Horna ◽  
Jaromir Hubalek ◽  
...  

2012 ◽  
Vol 64 (3) ◽  
pp. 953-962 ◽  
Author(s):  
Svetlana Despotovic ◽  
Branka Perendija ◽  
Jelena Gavric ◽  
Slavica Borkovic-Mitic ◽  
M.M. Paunovic ◽  
...  

The river snail (Viviparus acerosus) from the Velika Morava River, Serbia was chosen in our study in order to determine seasonal changes in oxidative stress biomarkers between July (summer) and September (autumn). The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the phase II biotransformation enzyme glutathione-S-transferase (GST), as well as the concentration of total glutathione (GSH), were examined in the whole body of the river snails. The obtained results show significantly higher activities of CAT, GSH-Px, GR and biotransformation phase II enzyme GST in September compared to July, while the GSH concentration was lower. There was no general trend in the seasonal changes in the activity of SOD. The presented data show that animals in their natural environment are exposed to constant fluctuations of environmental conditions that could cause antioxidants to exhibit seasonal variations. This fact should be considered as an important variable in the interpretation of results in biomonitoring studies.


2009 ◽  
Vol 2 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Takashi Yanagida ◽  
Jun Tsushima ◽  
Yoshihisa Kitamura ◽  
Daijiro Yanagisawa ◽  
Kazuyuki Takata ◽  
...  

Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Under cerebral ischemia/reperfusion-induced oxidative conditions, astrocytes accumulate and activate in the ischemic region. DJ-1 has recently been shown to be a sensor of oxidative stress in living cells. However, the function of astrocytic DJ-1 is still unknown. In the present study, to clarify the effect of astrocytic DJ-1 protein under massive oxidative insult, we used a focal ischemic rat model that had been subjected to middle cerebral artery occlusion (MCAO) and reperfusion. We then investigated changes in the distribution of DJ-1 in astrocytes, DJ-1 release from cultured astrocytes, and the effects of recombinant DJ-1 protein on hydrogen peroxide (H2O2)-induced death in normal and DJ-1-knockdown SH-SY5Y cells and on in vitro scavenging of hydroxyl radicals (•OH) by electron spin resonance spectrometry. At 24 h after 2-h MCAO and reperfusion, an infarct lesion was markedly observed using magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. In addition, reactive astrocytes enhanced DJ-1 expression in the penumbral zone of the ischemic core and that DJ-1 protein was extracellularly released from astrocytes by H2O2 in in vitro primary cultures. Although DJ-1-knockdown SH-SY5Y cells were markedly vulnerable to oxidative stress, treatment with glutathione S-transferase-tagged recombinant human DJ-1 protein (GST-DJ-1) significantly inhibited H2O2-induced cell death. In addition, GST-DJ-1 protein directly scavenged•OH. These results suggest that oxidative stress induces the release of astrocytic DJ-1 protein, which may contribute to astrocyte-mediated neuroprotection.


2021 ◽  
pp. 30-43
Author(s):  
Ekaterina Khozeeva ◽  
◽  
Yuliya Zimina ◽  
Galina Sroslova ◽  
◽  
...  

Under conditions of biotic and abiotic stress, reactive oxygen species (ROS) are formed in plants, which causes oxidative stress. At the same time, ROS play additional signaling roles in plant adaptation to stress. The study of the mechanisms of this process makes it possible to develop new ways of protecting organisms, in particular, agricultural plants, from negative stress effects. This review describes the current understanding of oxidative stress – the process of inhibition of the vital activity of cells under the action of reactive oxygen species. The distinctive features of plant oxidative stress and two main pathways of metabolic protection – the jasmonate and salicylate pathways – are separately identified. Various ways of identifying oxidative stress are also given. Innovative methods of protecting agricultural plants from oxidative stress are considered: the use of biopesticides – rhizobacteria and microscopic fungi, elicitors – the youngest direction in creating effective methods of protection. It also describes a relatively outdated method of protection – the use of fungicides. These substances were included in the review due to the recent appearance of biodegradable preparations of this type. Special attention is paid to elicitors – substances that are not typical for plants, the appearance of which in the cell causes a chain of biochemical processes similar to the metabolism of plants under oxidative stress. The most studied substances with the properties of elicitors are described: salicylic acid, jasmonates, hytosan and hydrogen peroxide; their role in the chain of response reactions. As an alternative, isothiocyanates – the main components of the “mustard bomb” – the protective mechanism of plants of the cruciferous family are considered. Also, the latest studies of isothiocyanates in the metabolic processes of plants are described.


2013 ◽  
Vol 59 (4) ◽  
pp. 443-451 ◽  
Author(s):  
E.A. Kosenko ◽  
L.A. Tikhonova ◽  
A.C. Poghosyan ◽  
Y.G. Kaminsky

Age of patients and brain oxidative stress may contribute to pathogenesis of Alzheimer's disease (AD). Erythrocytes (red blood cells, RBC) are considered as passive “reporter cells” for the oxidative status of the whole organism and are not well studied in AD. The aim of this work was to assess whether the antioxidant status of RBC changes in aging and AD. Blood was taken from AD and non-Alzheimer's dementia patients, aged-matched and younger controls. In vivo antioxidant status was assessed in each of the study subjects by measuring RBC levels of Н О , organic hydroperoxides, glutathione (GSH) and glutathione disulfide (GSSG), activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. In both aging and dementia, oxidative stress in RBC was shown to increase and to be expressed in elevated concentrations of H O and organic hydroperoxides, decreased the GSH/GSSG ratio and glutathione S-transferase activity. Decreased glutathione peroxidase activity in RBC may be considered as a new peripheral marker for Alzheimer’s disease while alterations of other parameters of oxidative stress reflect age-related events.


Sign in / Sign up

Export Citation Format

Share Document