Purification of DNA Damage-Dependent PARPs from E. coli for Structural and Biochemical Analysis

Author(s):  
Marie-France Langelier ◽  
Jamin D. Steffen ◽  
Amanda A. Riccio ◽  
Michael McCauley ◽  
John M. Pascal
Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 810
Author(s):  
Md. Golam Kibria ◽  
Akari Fukutani ◽  
Yoko Akazawa-Ogawa ◽  
Yoshihisa Hagihara ◽  
Yutaka Kuroda

In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1599-1610 ◽  
Author(s):  
Bradley T Smith ◽  
Graham C Walker

Abstract The cellular response to DNA damage that has been most extensively studied is the SOS response of Escherichia coli. Analyses of the SOS response have led to new insights into the transcriptional and posttranslational regulation of processes that increase cell survival after DNA damage as well as insights into DNA-damage-induced mutagenesis, i.e., SOS mutagenesis. SOS mutagenesis requires the recA and umuDC gene products and has as its mechanistic basis the alteration of DNA polymerase III such that it becomes capable of replicating DNA containing miscoding and noncoding lesions. Ongoing investigations of the mechanisms underlying SOS mutagenesis, as well as recent observations suggesting that the umuDC operon may have a role in the regulation of the E. coli cell cycle after DNA damage has occurred, are discussed.


2000 ◽  
Vol 182 (18) ◽  
pp. 5225-5230 ◽  
Author(s):  
Eliana Schlosser-Silverman ◽  
Maya Elgrably-Weiss ◽  
Ilan Rosenshine ◽  
Ron Kohen ◽  
Shoshy Altuvia

ABSTRACT Macrophages are armed with multiple oxygen-dependent and -independent bactericidal properties. However, the respiratory burst, generating reactive oxygen species, is believed to be a major cause of bacterial killing. We exploited the susceptibility of Escherichia coli in macrophages to characterize the effects of the respiratory burst on intracellular bacteria. We show that E. coli strains recovered from J774 macrophages exhibit high rates of mutations. We report that the DNA damage generated inside macrophages includes DNA strand breaks and the modification 8-oxo-2′-deoxyguanosine, which are typical oxidative lesions. Interestingly, we found that under these conditions, early in the infection the majority of E. coli cells are viable but gene expression is inhibited. Our findings demonstrate that macrophages can cause severe DNA damage to intracellular bacteria. Our results also suggest that protection against the macrophage-induced DNA damage is an important component of the bacterial defense mechanism within macrophages.


2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S253-S253
Author(s):  
John Crane ◽  
Mark Sutton ◽  
Muhammad Cheema ◽  
Michael Olyer

Abstract Background The SOS response is a conserved response to DNA damage that is found in Gram negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate then normally observed, which is called the mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in E. coli and Klebsiella pneumoniae (Bunnell BE, Escobar JF, Bair KL, Sutton MD, Crane JK (2017). Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS ONE 12(5): e0178303. https://doi.org/10.1371/journal.pone.0178303.) In addition to causing copying errors in DNA replication, Beaber et al. showed that induction of the SOS response increased the frequency of horizontal gene transfer into Vibrio cholerae, an organism naturally competent at uptake of extracellular DNA. (Beaber JW, Hochhut B, Waldor MK. 2003. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74.) Methods. In this study, we tested whether induction of the SOS response could induce transfer of antibiotic resistance from Enterobacter cloacae into E. coli, and whether zinc could inhibit that inter-species transfer of antibiotic resistance. Results. Ciprofloxacin, an inducer of the SOS response, increased the rate of transfer of an extended spectrum β-lactamase (ESBL) gene from Enterobacter into a susceptible E. coli strain. Zinc blocked SOS-induced horizontal transfer of §-lactamase into E. coli. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Conclusion. In vitro assays showed that zinc blocked the ability of RecA to bind to ssDNA, an early step in the SOS response, suggesting the mechanism by which zinc blocks the SOS response. Disclosures All authors: No reported disclosures.


Author(s):  
Toshihiro Ohta ◽  
John R. Battista ◽  
Caroline E. Donnelly ◽  
Graham C. Walker
Keyword(s):  

Biochimie ◽  
2021 ◽  
Vol 180 ◽  
pp. 158-168
Author(s):  
Deepti Singh ◽  
Ananda Guha Majumdar ◽  
Sunita Gamre ◽  
Mahesh Subramanian
Keyword(s):  

1987 ◽  
Vol 7 (1) ◽  
pp. 26-32 ◽  
Author(s):  
P W Doetsch ◽  
W D Henner ◽  
R P Cunningham ◽  
J H Toney ◽  
D E Helland

We have compared the sites of nucleotide incision on DNA damaged by oxidizing agents when cleavage is mediated by either Escherichia coli endonuclease III or an endonuclease present in bovine and human cells. E. coli endonuclease III, the bovine endonuclease isolated from calf thymus, and the human endonuclease partially purified from HeLa and CEM-C1 lymphoblastoid cells incised DNA damaged with osmium tetroxide, ionizing radiation, or high doses of UV light at sites of pyrimidines. For each damaging agent studied, regardless of whether the E. coli, bovine, or human endonuclease was used, the same sequence specificity of cleavage was observed. We detected this endonuclease activity in a variety of human fibroblasts derived from normal individuals as well as individuals with the DNA repair deficiency diseases ataxia telangiectasia and xeroderma pigmentosum. The highly conserved nature of such a DNA damage-specific endonuclease suggests that a common pathway exists in bacteria, humans, and other mammals for the reversal of certain types of oxidative DNA damage.


2014 ◽  
Vol 88 ◽  
pp. 104-108 ◽  
Author(s):  
Mitsuko Masutani ◽  
Diaz Baiseitov ◽  
Tasuku Itoh ◽  
Takahisa Hirai ◽  
Kulzhan Berikkhanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document