FACS Isolation of Viable Cells in Different Cell Cycle Stages from Asynchronous Culture for RNA Sequencing

Author(s):  
Daria M. Potashnikova ◽  
Sergey A. Golyshev ◽  
Alexey A. Penin ◽  
Maria D. Logacheva ◽  
Anna V. Klepikova ◽  
...  
2021 ◽  
Vol 9 (7) ◽  
pp. 1435
Author(s):  
Hisako Kushima ◽  
Toshiyuki Tsunoda ◽  
Taichi Matsumoto ◽  
Yoshiaki Kinoshita ◽  
Koichi Izumikawa ◽  
...  

Background/Aim: Aspergillus is often detected in respiratory samples from patients with chronic respiratory diseases, including pulmonary fibrosis, suggesting that it can easily colonize the airways. To determine the role of Aspergillus colonization in pulmonary fibrosis, we cultured human lung epithelial A549 cells or murine embryo fibroblast NIH/3T3 cells with Aspergillus conidia in 3D floating culture representing the microenvironment. Materials and Methods: Cells were cultured in two-dimensional (2D) and three-dimensional floating (3DF) culture with heat-inactivated Aspergillus fumigatus (AF) 293 conidia at an effector-to-target cell ratio of 1:10 (early-phase model) and 1:100 (colonization model), and RNA-sequencing and Western blots (WB) were performed. Results: AF293 conidia reduced A549 cell growth in 2D and 3DF cultures and induced apoptosis in A549 spheroids in 3DF culture. RNA-sequencing revealed the increased expression of genes associated with interferon-mediated antiviral responses including MX dymamin-like GTPase 1 (MX1). Interestingly, the decreased expression of genes associated with the cell cycle was observed with a high concentration of AF293 conidia. WB revealed that epithelial-mesenchymal transition was not involved. Notably, AF293 conidia increased NIH/3T3 growth only in 3DF culture without inducing an apoptotic reaction. RNA-sequencing revealed the increased expression of genes associated with interferon signalling, including MX2; however, the decreased expression of genes associated with the cell cycle was not observed. Conclusions: AF affects both apoptosis of epithelial cells and the growth of fibroblasts. A deeper understanding of the detailed mechanisms underlying Aspergillus-mediated signaling pathway in epithelial cells and fibroblasts will help us to understand the lung microenvironment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 47-48
Author(s):  
Iris Appelmann ◽  
Azam Salimi ◽  
Michael Huber ◽  
Mirle Schemionek ◽  
Margherita Vieri ◽  
...  

Background Activating RAS mutations drive around 30% of pre-B cell acute lymphoblastic leukemias (pre-B ALL) and are particularly common in relapsed ALL with a consecutively poor outcome. Recently published data demonstrated the critical role of the unfolded protein response (UPR) network, namely its IRE1α-XBP1 axis, for the survival of pre-B ALL cells: High expression of XBP1 confers a poor prognosis in pre B-ALL. However, the mechanism of XBP1 activation has not yet been elucidated in RAS mutated pre-B ALL. In this study, we aimed at identifying the molecular mechanism underlying pro-survival IRE1α-XBP1 signaling in RAS mutated pre-B ALL. Methods For a TET-ON inducible NRASG12D model in conditional Xbp1 knockout mice, we used interleukin 7 (IL-7)-dependent murine Mx1-Cre;Xbp1fl/fl pre-B cells transduced with a TET-ON inducible NRASG12D. We performed in vitro cell cycle and apoptosis assays with propidium iodide (PI) and annexin-V/PI. Furthermore, Western Blot and RT-qPCR were applied to analyze target gene expression. In a second approach, we focused on the signaling events following the blockade of RAS downstream targets using the MEK inhibitor PD0325901 and the dual PI3K/mTOR inhibitor BEZ235. We then assessed the efficacy of small molecule inhibition of IRE1α by MKC-8866 on XBP1 inactivation in RAS-mutated pre-B ALL cells either as a single treatment and in combination with the above mentioned drugs. Results We found the expression of Xbp1 significantly increased at the mRNA level with induction of NRASG12D. To determine the significance of Xbp1 in NRASG12D-driven pre-B ALL, we genetically deleted the IRE1α target Xbp1 using Cre-mediated deletion of Xbp1fl/fl in our mouse model of pre-B ALL. Genetic loss of Xbp1 significantly induced apoptosis (2.0-fold, p<0.0001) and caused cell cycle arrest (induction of G0/1, 1.7-fold, p=0.0003) along with an increase in the expression of CDK inhibitors, p21CIP1 and p27KIP1 at the protein level. Genetic ablation of Xbp1 abrogated IL-7 receptor (IL-7R) signaling by reducing the phosphorylation levels of STAT5-Y694 and JAK1-Y1022/Y1023. In an additional approach, we revealed that IL-7-deprived pre-B ALL cells reduce the mRNA expression of Xbp1s, indicating that Xbp1 acts as a downstream linchpin of the IL-7 receptor signaling pathway. Both IL-7-deprivation and genetic loss of Xbp1 increased the phosphorylation levels of ERK1/2-T202/Y204, AKT-S473 and the protein levels of NRASG12D and MAPK negative regulator DUSP6. Pharmacological inhibition of XBP1 activation using MKC-8866 resulted in similar effects on the expression of RAS downstream targets. We therefore tested MKC-8866 in combination with MEK inhibition by PD0325901 as a potential therapeutic strategy against pre-B ALL, which proved non-efficient. As a second option with therapeutic implications, we focused on the PI3K pathway which acts downstream of both the IL-7R and RAS signaling pathways. Strikingly, we observed that genetic ablation of Xbp1 (viable cells after 72 h, BEZ: 71.9 ± 9.0 vs BEZ+ Mx1-Cre;Xbp1fl/f: 10.0 ± 4.9) or pharmacological inhibition of its production with MKC-8866 (viable cells after five days, BEZ: 58.0 ± 6.8 vs BEZ+ MKC-8866: 13.3 ± 7.4) sensitizes pre-B ALL to dual inhibition of PI3K/mTOR with BEZ235. By applying the Bliss formula, we were able to show that BEZ235 in combination with MKC-8866 synergistically reduces the viability of RAS-mutated pre-B ALL cells. Gene expression analysis indicated that BEZ235 in combination with MKC-8866 fully blocked IL-7R signaling and caused an aberrant activation of Ras-Erk signaling. Targeting PI3K/mTOR signaling along with XBP1 inactivation increased expression of NRASG12D and its target DUSP6. In addition, we showed that combined therapy increased expression levels of p19Arf in RAS-mutated pre-B ALL, implicating cell senescence mediated by activated RAS signaling. Conclusion Our work strongly supports the hypothesis that XBP1 induces its positive effects on progression of pre-B ALL cells through the IL-7R signaling pathway. IL-7R signaling through its downstream effector XBP1 counteracts the RAS signaling pathway to promote leukemogenesis in pre-B ALL cells. Active XBP1 prevents the cytotoxic effects of BEZ235 in pre-B ALL cells, and hence targeting XBP1 in combination with dual PI3K/mTOR inhibition by BEZ235 appears as a promising targeted strategy against the "undruggable" driver RAS in NRASG12D-mutated pre-B ALL. Disclosures Brümmendorf: Janssen: Consultancy; Merck: Consultancy; Novartis: Consultancy, Other: travel, accommodation, expenses, Research Funding; Takeda: Consultancy; Pfizer: Consultancy, Honoraria, Other: Travel, Accommodation, Expenses, Research Funding.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Joseph Pickering ◽  
Constance A Rich ◽  
Holly Stainton ◽  
Cristina Aceituno ◽  
Kavitha Chinnaiya ◽  
...  

The longstanding view of how proliferative outgrowth terminates following the patterning phase of limb development involves the breakdown of reciprocal extrinsic signalling between the distal mesenchyme and the overlying epithelium (e-m signalling). However, by grafting distal mesenchyme cells from late stage chick wing buds to the epithelial environment of younger wing buds, we show that this mechanism is not required. RNA sequencing reveals that distal mesenchyme cells complete proliferative outgrowth by an intrinsic cell cycle timer in the presence of e-m signalling. In this process, e-m signalling is required permissively to allow the intrinsic cell cycle timer to run its course. We provide evidence that a temporal switch from BMP antagonism to BMP signalling controls the intrinsic cell cycle timer during limb outgrowth. Our findings have general implications for other patterning systems in which extrinsic signals and intrinsic timers are integrated.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Marlin Touma ◽  
Ashley Cass ◽  
Xuedong Kang ◽  
Yan Zhao ◽  
Reshma Biniwale ◽  
...  

Background: Fetal to neonatal transition of heart is an elaborate process, during which, neonatal cardiomyocytes undergo functional maturation and terminal exit from the cell cycle. However, transcriptome programming in neonatal cardiac chambers during perinatal stages is understudied. In particular, the changes in long non-coding RNAs (lncRNAs) in neonatal heart have not been explored. Objective: To achieve transcriptome-wide analysis of lncRNAs in neonatal left ventricle (LV) and right ventricle (RV) during maturation stages using deep RNA-Sequencing Methods: Deep RNA-sequencing was performed on male newborn mouse (C57 BL) LV and RV at 3 time points of perinatal circulatory transition: P0, P3 and P7. Reads were mapped to mouse genome (mm10). The lncRNAs annotated in NONCODE database were identified. Differentially expressed lncRNAs were defined as those with coefficient of variation ≥0.2, at a false discovery rate ≤0.05, and expressed at ≥3 RPKM in at least one sample. Correlated lncRNAs/ gene pairs were identified using Pearson’s (r2≥0.8, P≤0.05). A subset of LncRNAs/gene expression was validated using qRT-PCR. Results: Out of the 70, 983 observed unique lncRNAs, approximately 7000 were identified exhibiting significant variation during maturation windows with highly spatial-temporal dependent expression patterns, including approximately 5000 known and 2000 novel lncRNAs. Notably, 20% of these lncRNAs were located within 50 KB of a protein coding gene. Out of a total of 2400 lncRNAs/gene pairs, 10 % exhibited significantly concordant (lncRNA/gene) expression patterns. These correlated genes were significantly enriched in metabolism, cell cycle and contractility functional ontology. Interestingly, some of these lncRNAs exhibited concordance with their neighboring gene in human tissues with congenital heart defects, suggesting conserved, potentially significant, regulatory function. Conclusions: Transcriptome programming during neonatal heart maturation involves global changes in lncRNAs. Their expression concordance with neighboring protein coding genes implicates potential important regulatory role of lncRNAs in neonatal heart chamber specification and congenital diseases.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1082-1082 ◽  
Author(s):  
Camelia Iancu-Rubin ◽  
Mosoyan Goar ◽  
Ronald Hoffman

Abstract Abstract 1082 Megakaryocyte (MK) development is characterized by polyploidization, cytoplasmic maturation and proplatelet formation, which culminates in the release of platelets into the circulation. The tumor suppressor p53 plays a critical role in the regulation of both cell cycle and apoptosis; its function is tightly controlled by the murine double minute (MDM2) protein which facilitates p53 degradation and inhibits p53 transcriptional activity. MK ploidy results from a disruption of normal cell cycle progression termed endomitosis while platelet release is believed to depend on apoptotic processes. The role of p53-MDM2 in MK in these two processes has not been clearly defined. A small molecule RG7112, which disrupts MDM2-p53 interaction, has shown promising anti-tumor effects in phase I clinical trials. This beneficial outcome has, however, been associated with the development of thrombocytopenia. We, therefore, used RG7112 as pharmacological probe to examine the effects of disruption of the MDM2-p53 regulatory loop on MK. We determined the effects of RG7112 on primary human MK by utilizing an in vitro system in which MK were generated from BM-derived CD34+ cells. We first demonstrated that both p53 and MDM2 transcripts are up-regulated as MK differentiation progresses. The ability of CD34+ cells to proliferate in the absence or presence of various concentrations of RG7112 was then evaluated both in liquid cultures and in CFU-MK colony assays. CD34+ cells exposed to 10 μM RG7112 for 7 days generated 70% fewer viable cells as compared to control cells exposed to the inactive form of the drug (p value = 0.0038). Furthermore, CD34+ cells treated with RG7112 formed up to 40% less CFU-MK colonies as compared to untreated cells. An assessment of apoptosis of MK precursors generated in the presence of RG7112 revealed that 69.5+2.1% were Annexin V positive as compared to 31.5+3.5% present in control cultures. These findings are consistent with the previously reported role of RG7112 in inducing p53 activation and apoptosis. Interestingly, phenotypical characterization of the viable cells generated under identical culture conditions, showed that RG7112 treatment did not interfere with the ability of CD34+ cells to acquire markers of MK differentiation during the first 7 days of culture since similar degrees of CD41 and CD42 expression were observed in the absence and in the presence of the drug. Likewise, exposure of MK precursors to the drug for 7 additional days (i.e. later stages of maturation) did not influence CD41 and CD42 expression. By contrast, cells differentiated in the presence of 5 μM RG7112 generated 50% fewer polyploid MK with greater than 4N DNA content as compared to those treated with the inactive form of the drug. Moreover, the negative effects on ploidy were associated with p53 activation, as assessed by the increased levels of p21 protein, a direct target of p53 which is known to limit polyploidization of primary MK. Finally, platelets generated in vitro were analyzed phenotypically and quantitated by dual labeling with anti-CD41 antibodies and thiazole orange (TO). The number of CD41+/TO+platelets derived from MK generated in the presence of RG7112 was reduced by 22% as compared to control. Based on these findings, we conclude that RG7112 impacts megakaryopoiesis by two potential mechanisms: 1) Impairing the ability of CD34+ cells to generate MK precursors due to increased apoptosis; 2) Limiting polyploidization during the late stages of development due to phamacological activation of p53. A combination of these two effects may provide an explanation for thrombocytopenia observed in patients receiving this drug and suggests that p53 plays an important role in normal human thrombocytopoiesis. Disclosures: Iancu-Rubin: Roche: Research Funding. Hoffman:Roche: Research Funding.


1995 ◽  
Vol 131 (4) ◽  
pp. 1025-1037 ◽  
Author(s):  
S Loukin ◽  
C Kung

Metal ion requirements for the proliferation of Saccharomyces cerevisiae were investigated. We used bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a relatively acid tolerant chelator, to reduce the free metal ion concentrations in culture media. Chelatable metal ions were added back individually and in combination. In addition to a requirement for approximately 10 pM external free Zn2+ we found an interchangeable requirement for either 66 nM free Ca2+ or only 130 pM free Mn2+. Cells depleted of Mn2+ and Ca2+ arrested as viable cells with 2 N nuclei and tended to have very small minibuds. In the absence of added Mn2+, robust growth required approximately 60 microM total internal Ca2+. In the presence of added Mn2+, robust growth continued even when internal Ca2+ was < 3% this level. Chelator-free experiments showed that MnCl2 strongly and CaCl2 weakly restored high-temperature growth of cdc1ts strains which similarly arrest as viable cells with 2 N nuclear contents and small buds. Its much greater effectiveness compared with Ca2+ suggests that Mn2+ is likely to be a physiologic mediator of bud and nuclear development in yeast. This stands in marked contrast to a claim that Ca2+ is uniquely required for cell-cycle progression in yeast. We discuss the possibility that Mn2+ may function as an intracellular signal transducer and how this possibility relates to previous claims of Ca2+'s roles in yeast metabolism.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 190-190
Author(s):  
Shady Adnan Awad ◽  
Helena Hohtari ◽  
Komal Kumar Javarappa ◽  
Tania Brandstoetter ◽  
Daehong Kim ◽  
...  

Introduction: The oncoprotein Bcr-Abl has two major isoforms, depending on the breakpoint in BCR gene, p190 and p210. While p210 is the hallmark of chronic myeloid leukemia (CML), p190 occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) patients. p190 occurs as a sole transcript in 1-2% CML patients, associated with distinct features like monocytosis and frequent additional cytogenetic abnormalities (ACA) at diagnosis. It also confers a risk of treatment failure and progression in chronic phase (CP) CML patients. However, the underlying mechanisms are largely unknown. Here we explore the characteristics of p190 and p210 in CML and ALL patients using next generation sequencing, phospho-flowcytometry and high throughput drug testing. Patients and methods: Peripheral blood mononuclear cells (PMNC) were collected at diagnosis from four CP-CML patients harboring p190 isoform from Helsinki University Hospital. Genetic alterations were identified by whole exome sequencing. RNA sequencing was employed to analyze transcriptional profiles of p190 CML (n=3) in contrast to p210 CML patients (n=4). A thorough transcriptional, phosphorylation and drug sensitivity profiling were applied to five p190- and three p210-expressing Ph+ALL patients. Expression alterations were further characterized in two cell line models mimicking BCR-ABL positive leukemia (Ba/F3 and HPCLSK). Phosphorylation profiles were analyzed by flowcytometry and phospho-array (Tyrosine Phosphorylation ProArray, Full Moon Biosystems). For drug sensitivity and resistance testing (DSRT), a custom plate set comprising 75 approved and investigational oncology drugs was used for patient samples and more extensive 528-drugs plates were used for the cell lines. Results: CML patients with p190 had a median age of 72.5 years at the diagnosis (range: 50-80) and all received imatinib as a frontline treatment. Only one patient achieved a fluctuating major molecular response (MMR) by 12 months while the rest of the patients showed primary resistance to treatment and were shifted to a 2nd line TKI, nilotinib (n=2) or proceeded to HSCT (n=1). By exome sequencing we identified 26 variants in p190-CML samples (median per patient=7, range: 2-10), including variants in ASXL1, DNMT3A and KDM4D genes. RNA-sequencing analysis identified 19 and 97 dysregulated genes (Q <0.05) between p190- and p210 in CML and Ph+ ALL cells respectively. In CML, enrichment analysis revealed upregulation of TNF, interferon (IFN), IL1-R and Toll-like receptor (TLR) signaling, TP53-related, cell cycle and apoptosis pathways. Among Ph+ ALL samples, many CML-related genes were upregulated in samples encompassing p210 while IFN-, TP53- and cell cycle-related molecules were upregulated in p190 samples. p190 samples exhibited hyper-phosphorylation of Src kinase compared to p210 samples. DSRT results also revealed increased sensitivity of primary Ph+ ALL-p190 cells to Src-inhibitors (dasatinib and saracatinib), glucocorticoids and MDM2 inhibitors/TP53 activators (SAR405838 and idasanutlin). Regarding cell lines, Ba/F3-p190 showed the upregulation of interferon signaling pathways compared to p210. Src was also hyperphosphorylated in both Ba/F3 and HPCLSK p190 models. In addition to glucocorticoids and Src-inhibitors, compounds blocking the activity of the inhibitors of apoptosis protein (IAP) family were highly effective at reducing the viability of p190 compared to p210 cells in both cell lines. Conclusions: In CML, p190 isoform of BCR-ABL1 is associated with distinct features and should be considered as a high-risk group. Combining clinical, genomic, phosphorylation and drug sensitivity data, we demonstrated that p190 activates specific cancer pathways, notably Src signaling and interferon pathways. Data also suggests that CML patients with p190 could benefit from broad spectrum TKI with Src inhibiting activity or combination of TKI with MDM2- or IAP-inhibitors. Disclosures Heckman: Orion Pharma: Research Funding; Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding. Porkka:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding. Mustjoki:Novartis: Research Funding; Pfizer: Research Funding; BMS: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 851-851
Author(s):  
Ana M Hurtado López ◽  
Tzu Hua Chen-Liang ◽  
María Zurdo ◽  
Anna Puiggros ◽  
Andrea Gómez-Llonín ◽  
...  

Background and Aim: Chronic lymphocytic leukemia (CLL) is an incurable neoplasm with considerable clinical heterogeneity that is underpinned by distinct genetic changes. This poses a great challenge to the development of effective treatment, as responses to novel therapies may vary depending upon the biological subtype of disease. NOTCH1 has emerged as the most commonly mutated gene in CLL at diagnosis, its frequency rises with progression, and the variant c.7541_7542delCT accounts for approximately 80% of cases. NOTCH1-mutated (NOTCH1mut) CLL subset represents a subtype that responds poorly to anti-CD20 drugs, has worse outcomes, and a proliferative profile. We aimed, among the proliferative signals, to study the D-type cyclins that govern cell cycle entry in a NOTCH1mut subset which lacks an accurate targeted therapy. Methods: We performed targeted sequencing on 289 CLL cases with a TruSeq Custom Amplicon panel from Illumina, containing 13 genes recurrently mutated in CLL. Paired-end sequencing reached a mean depth of 938 reads/base. Out of 30 NOTCH1mut patients, RNA from the CD19+ fraction was available in 25 cases. Cyclins D1, D2, D3 and cyclin dependent kinases CDK4 and CDK6 expression was measured by RT-qPCR in 25 NOTCH1mut and 57 NOTCH1wild type (NOTCH1wt). CD19+ B-CLL cells from 7 NOTCH wt and 2 NOTCH1mut patients were cultured in Expansion Human Media supplemented with CD40L, IL-4 antibiotics and inactivated BFS. On day ten 2,5x105 B cells were added to a combination of ON-TARGETplus SMART pool siRNA NOTCH1, pool siRNA CCND1, SMART pool siRNA CCND2, or ON-TARGETplus siCONTROL as negative control. Electroporation was performed with Neon Transfection System in 10 ul tips using settings of 1400 volts, 10ms width, and 3 pulses. Transfected cells were double stained with Annexin V-FITC conjugate and PI in isotonic solution, and then analyzed by FC. Viable cells were defined as double negative cells. Results: A total of 82 CLL patients, 25 NOTCH1mut and 57 NOTCH1wt were included in the RT-qPCR study. Figure 1a shows fold change expression and p value comparing NOTCH1mutvs.NOTCH1wt of CDK4 (FC= 11,1; p<0,001), CDK6 (FC= 11,2; p<0,001), CCND1 (FC= 8,9; p<0,001), CCND2 (FC= 8,4; p<0,001), and CCND3 (FC= 15; p<0,001). As cyclin D2 and CDK4 are located both on chromosome 12, we next checked whether that overexpression was due to copy number gains. However, we found no significant differences in the expression of Cyclin D2 in trisomy 12 NOTCH1mut cases (n=3) vs. non trisomy 12 NOTCH1mut cases (n=22) (0,28 vs. 0,37; p= 0,8) while CDK4 expression was higher in trisomy 12 NOTCH1mut vs. non trisomy 12 NOTCH1mut cases with a trend to reach statistical significant (0,74 vs. 0,29; p= 0,06). Cell culture from 7 CLL patients was stable until optimal day of culture and confluency for transfection and apoptosis assay. Viability was studied by the trypan blue dye exclusion test. Patients with NOTCH1mut kept a higher cell count and viability than NOTCH1 wt (70% cell survival in NOTCH1mut vs. 45% in NOTCH1wt on day +8). Next we transfected cultured primary cells from two c.7541_7542delCTNOTCH1mut and 5 NOTCH1wt patients. Figure 1b shows the cell viability assay after 48 h of the transfection, highlighting a marked reduction in viable cells in NOTCH1mut cases in each silencing experiment, (siRNA_Control: 77% NOTCH1sirna: 71 %, CCND2siRNA: 73% and CCND1: 72%) which was not paralleled in NOTCH1wt cases (siRNA_Control: 81% NOTCH1sirna: 80 %, CCND2siRNA: 84% and CCND1: 78 %). Figure 1C shows how the apoptosis index increased in every silencing experiment compared with NOTCH1mut siRNA pool control. However, for therapeutic purposes the accurate approach should increase apoptosis, leading the cells to a controlled death, and reduce necrosis, which is responsible of inflammation and collateral damage. The optimal apoptosis/necrosis ratio in our experiments, it is shown by the silencing of CCDN2 in NOTCH1mut (ratio A/N=5,15) where percentage of necrotic cells was markedly reduced (fig.1d). Conclusions: We found a marked upregulation of cyclins governing the transition from G1 to S phase of the cell cycle in patients with CLL and NOTCH1 mutation compared with those wild type cases for this lesion. In addition, silencing of cyclin D2 in the NOTCH1mut CLL subset was able to reach a similar degree of apoptosis than silencing NOTCH1, with a more favourable reduction of necrosis, emerging as a suitable candidate for a therapeutic target. Disclosures Jerez: Novartis: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 579-579
Author(s):  
Laura Barreyro ◽  
Avery M Sampson ◽  
Lyndsey Bolanos ◽  
Madeline Niederkorn ◽  
Mario Pujato ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) from MDS and AML patients exhibit overexpression of TRAF6 and related innate immune pathway genes, suggesting a dependency of leukemic HSPC on activated innate immune signaling. Unfortunately, inhibiting TRAF6 directly has proven difficult, as few binding pockets on TRAF6 exist for small molecule targeting. UBE2N/Ubc13, a cofactor of TRAF6 and key enzyme in innate immune signaling, is an ubiquitin-conjugating E2 enzyme that catalyzes lysine 63 (K63)-linked ubiquitin chains on TRAF6 and its substrates. Importantly, a commercially available compound and our own chemical series of UBE2N inhibitors are available. In this study we evaluated the cellular and molecular effects of pharmacologic and genetic inhibition of UBE2N in MDS and AML cells. Pharmacologic inhibition of UBE2N with NSC697923 or genetic inhibition with shRNAs reduced the clonogenic capacity of MDSL/AML cell lines and primary cells while not significantly affecting normal HSPC. Treatment of MDS/AML cells with NSC697923 reduced the cellular metabolic activity, induced a G2/M cell cycle arrest, and increased cell death. Moreover, xenotransplantation of an MDS-derived patient cell line (MDSL) into immunodeficient mice (NSG-SGM3) showed a 50-70% reduced graft upon UBE2N knockdown relative to a non-silencing control. The cellular effects of UBE2N inhibition correspond with suppression of TRAF6-induced NF-kB activation of target genes. In addition, we found that NSC697923 treatment results in a dramatic loss of TRAF6 protein expression, which is rescued by inhibition of the proteasome. Intriguingly, our molecular analysis revealed that UBE2N inhibition shifts the stoichiometry of TRAF6 ubiquitin chains from K63-linked to K48-linked ubiquitin, resulting in proteasome-mediated degradation. To identify the molecular basis of UBE2N inhibition, we performed a global ubiquitin screen for changes in ubiquitinated substrates and gene expression profiling by RNA sequencing. For the ubiquitin screen, K63 ubiquitinated proteins were immunoprecipitated from MDSL cells upon pharmacologic inhibition of UBE2N, followed by mass spectrometry analysis. UBE2N inhibition significantly altered the ubiquitination of ~140 proteins involved in innate immune signaling, glycolysis, cell survival, RNA splicing, and DNA damage response. In parallel, RNA sequencing of MDSL cells treated with NSC697923 revealed expression changes in genes involved in mRNA processing, cell cycle and glycolysis. Several components of the E3 ligase anaphase-promoting complex APC/CDC20 were downregulated after UBE2N inhibition. As expected, increased expression of APC/CDC20 substrates (i.e., cyclin B1) were observed following treatment with NSC697923, suggesting that UBE2N inhibition in MDS/AML blocks degradation of APC/CDC20 targets and leads to mitotic alterations and apoptosis. One substrate identified in NSC697923-treated MDSL cells by the ubiquitin screen is DDB1, a component of the CUL4-CRBN E3 ligase complex targeted by Lenalidomide (LEN). LEN has shown encouraging results in del(5q) MDS patients; however, its effects are limited in other cytogenetic subtypes of MDS or AML. Therefore, the identification of molecular targets that can enhance or extend the use of LEN in a broader spectrum of patients is desired. As such, we explored the possibility of a cooperative effect of LEN and NSC697923 on MDS/AML cells. As compared to individual treatments, the combination of LEN and NSC697923 or UBE2N shRNAs significantly suppressed the function and viability of MDS/AML cell lines and patient samples in vitro. More striking, treatment of LEN and NSC697923 impaired MDS/AML cells that are refractory to treatment of LEN or NSC697923 alone. These findings suggest that UBE2N is a promising target to extend the use of LEN to other subtypes of MDS/AML. In summary, our data reveal a novel therapeutic target, an E2 ubiquitin conjugating enzyme (UBE2N), in MDS/AML. UBE2N inhibition suppresses the function and viability of MDS/AML cell lines and patient samples, due in part to degradation of TRAF6, suppressing innate immune signaling, and inducing mitotic alterations. Lastly, we show that inhibition of UBE2N alters ubiquitination of DDB1, a component of the CRBN complex, and cooperates with LEN to target MDS/AML cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document