New Technologies for Ultra-High Throughput Genotyping in Plants

Author(s):  
Nikki Appleby ◽  
David Edwards ◽  
Jacqueline Batley
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Jelena Ochs ◽  
Ferdinand Biermann ◽  
Tobias Piotrowski ◽  
Frederik Erkens ◽  
Bastian Nießing ◽  
...  

Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.


2020 ◽  
Vol 12 (6) ◽  
pp. 998 ◽  
Author(s):  
GyuJin Jang ◽  
Jaeyoung Kim ◽  
Ju-Kyung Yu ◽  
Hak-Jin Kim ◽  
Yoonha Kim ◽  
...  

Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Kena Song ◽  
Guoqiang Li ◽  
Xiangyang Zu ◽  
Zhe Du ◽  
Liyu Liu ◽  
...  

Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.


2020 ◽  
Vol 12 (3) ◽  
pp. 574 ◽  
Author(s):  
Yuncai Hu ◽  
Samuel Knapp ◽  
Urs Schmidhalter

Enhancing plant breeding to ensure global food security requires new technologies. For wheat phenotyping, only limited seeds and resources are available in early selection cycles. This forces breeders to use small plots with single or multiple row plots in order to include the maximum number of genotypes/lines for their assessment. High-throughput phenotyping through remote sensing may meet the requirements for the phenotyping of thousands of genotypes grown in small plots in early selection cycles. Therefore, the aim of this study was to compare the performance of an unmanned aerial vehicle (UAV) for assessing the grain yield of wheat genotypes in different row numbers per plot in the early selection cycles with ground-based spectral sensing. A field experiment consisting of 32 wheat genotypes with four plot designs (1, 2, 3, and 12 rows per plot) was conducted. Near infrared (NIR)-based spectral indices showed significant correlations (p < 0.01) with the grain yield at flowering to grain filling, regardless of row numbers, indicating the potential of spectral indices as indirect selection traits for the wheat grain yield. Compared with terrestrial sensing, aerial-based sensing from UAV showed consistently higher levels of association with the grain yield, indicating that an increased precision may be obtained and is expected to increase the efficiency of high-throughput phenotyping in large-scale plant breeding programs. Our results suggest that high-throughput sensing from UAV may become a convenient and efficient tool for breeders to promote a more efficient selection of improved genotypes in early selection cycles. Such new information may support the calibration of genomic information by providing additional information on other complex traits, which can be ascertained by spectral sensing.


1998 ◽  
Vol 3 (1) ◽  
pp. 13-17 ◽  
Author(s):  
John Major

In response to mounting competitive pressures, the current trend in the pharmaceutical industry is to shorten the time scale for all aspects of drug discovery. While advances in computation, structural chemistry, and molecular modeling are facilitating rational design activities, empirical screening continues to play a crucial role in lead identification. Because the ability to test large numbers of compounds quickly and efficiently can provide a competitive advantage, high throughput screening (HTS) has become a key tool in many companies. To achieve the necessary productivity, effective integration of compound supply, assay operation and data management is essential. HTS is a very high technology enterprise that must take full advantage of the latest advances in bioscience, biotechnology, engineering, and information science. There is a constant dilemma, however, in relation to when well-established, mature technologies should be replaced by new methods that promise to deliver spectacular advantages. The final decision must be based on weighing the promised benefit against the cost and risk. While huge challenges face the pharmaceutical industry, there are also opportunities for those companies that can identify and implement new technology effectively.


2021 ◽  
pp. 247255522110262
Author(s):  
Nathan P. Coussens ◽  
Douglas S. Auld ◽  
Jonathan R. Thielman ◽  
Bridget K. Wagner ◽  
Jayme L. Dahlin

Compound-dependent assay interferences represent a continued burden in drug and chemical probe discovery. The open-source National Institutes of Health/National Center for Advancing Translational Sciences (NIH/NCATS) Assay Guidance Manual (AGM) established an “Assay Artifacts and Interferences” section to address different sources of artifacts and interferences in biological assays. In addition to the frequent introduction of new chapters in this important topic area, older chapters are periodically updated by experts from academia, industry, and government to include new technologies and practices. Section chapters describe many best practices for mitigating and identifying compound-dependent assay interferences. Using two previously reported biochemical high-throughput screening campaigns for small-molecule inhibitors of the epigenetic targets Rtt109 and NSD2, the authors review best practices and direct readers to high-yield resources in the AGM and elsewhere for the mitigation and identification of compound-dependent reactivity and aggregation assay interferences.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
M. R. Weimar ◽  
J. Cheung ◽  
D. Dey ◽  
C. McSweeney ◽  
M. Morrison ◽  
...  

ABSTRACT Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H2 and CO2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions. IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions.


2012 ◽  
Vol 187 ◽  
pp. 259-264
Author(s):  
Pierre Yves Guittet ◽  
Lars Markwort ◽  
Greg Savage ◽  
Sandip Halder ◽  
Anne Jourdain

The number of consumer products requiring 3D stacked IC (3D SIC) is growing, and volume output is expected to start between 2011 and 2013. R&D centers and production sites are addressing the remaining obstacles to production for these new technologies. To enable fast production ramp, there is urgency to get enablers in place, including advanced, dedicated process control methods. Using an innovative high throughput inspection technology, we show ways to control future 3D SIC production lines, getting data from 100% of the wafers and providing defect classification for yield management.


2020 ◽  
Vol 12 (10) ◽  
pp. 939-947 ◽  
Author(s):  
Nurken Berdigaliyev ◽  
Mohamad Aljofan

A new medicine will take an average of 10–15 years and more than US$2 billion before it can reach the pharmacy shelf. Traditionally, drug discovery relied on natural products as the main source of new drug entities, but was later shifted toward high-throughput synthesis and combinatorial chemistry-based development. New technologies such as ultra-high-throughput drug screening and artificial intelligence are being heavily employed to reduce the cost and the time of early drug discovery, but they remain relatively unchanged. However, are there other potentially faster and cheaper means of drug discovery? Is drug repurposing a viable alternative? In this review, we discuss the different means of drug discovery including their advantages and disadvantages.


1998 ◽  
Vol 20 (4) ◽  
pp. 117-120
Author(s):  
John Babiak

High throughput screening (HTS) involves using automated equipment to test a large number of samples against a defined molecular target to identify a reasonable number of active molecules in a timely fashion. Major factors which can influence priorities for the limited resources of the HTS group are projects, productivity, progress and people. The challenge to the HTS group is to provide excellent and timely screening services, but still devote efforts to new technologies and personnel development. This article explains why these factors are so important.


Sign in / Sign up

Export Citation Format

Share Document